/

50- sm.-75ﬂ4
2= %/Q"

Secondﬂ Order Electromagnetlc and 1
Hydredynamic Effects in High- Frequenc \je\\ |

Radlo-Wave Scattering from the Sea o

B R R TR

ADA087051

Q\)
1) P
EDonald ‘Ii[]ohnstone E

5 O N AR WA .

, ’ah_‘.. "J-ww s W [-

s - WEE—— Ak b e, - ,3,"; '5 ;

f by ;,,:‘,f“‘”l" J ot

7 \Mare 1975 o fZe L
ﬂ.w.«»‘""" - . AN

‘%chmcal Re{}a@t 0.3615-3

b e ..”\

+ et

Prepared Under

Office of Naval Research Contract:

i ;I N00014-75-C 0356 —JX
(_N00014-69-A-0200-6012

(Scripps Institution of Oceanography
UCSD Contract No. 71-C-66328)

T

g CENTER FOR RAGAR ASTRONOMY
= STANFORD ELECTRONICS LRBORATORIES
E - STANFORD IIIIWERSITV “ﬂﬂfﬂﬂﬂ CRLIFORDIA

- ———

240 g0 6 12 026

-

j



8EL~75-004

SECOND~ORDER ELECTROMAGNETIC AND HYDRODYNAMIC EFFECTS
IN HIGH-FREQUENCY RADIO-WAVE SCATTERING FROM THE SEA

by

Donald L. Johnstone

March 1975

" Reproduction in whols or in part
is permitted for any purpose of
the United States Goverament.

Technical Report No. 3615-3

Prepared under

Office of Naval Research Contracts
N00014~75-C~0356
and
N00014-69-A~0200~8012
(Scripps Institution of Oceanography
UCSD Contract No, 71-C-66328) -

Radiosoience laboratory
Stanford Electronics laboratories
Stanford University Stanford, California

This documant h;:u heon

a
lor public reicons and mlo,:,;,;
distribution is unlimited,

S ——— e

————




PP T AN s L et

ot e IO

r

(©) Copyright 1975

by

Donald LeRoy Johnstone

11




VT T R

i3

SR

g

Curiw stonr s s |

g gt

”ﬂMM*‘W&?{Aﬁ(ﬁrmiw,?-‘if;.gﬁ\‘ﬂ«ﬁ\u»ﬁ'w;’}\t T RS pap S

’\\/

A theoretical analysis of high~frequency radio-wave scattering from
the sea establishes relationships between the doppler continuum cf ob-
served radar echoes and the heights and propagation directions of ocean-
surface waves. This provides new techniques for the remote sensing of
sea-surface conditions by either monostatic or bistatic radars.

Integral expressions for the incremental -surface radar cross section
per unit frequency are derived, assuming a slightly rough time~varying
random surface for the sea. These expressions are a function of surface-
height directional spectra and contain electromagnetic and hydrodynamic
effects to second order. First-order terms confirm that Bragg scatter~
ing from wave trains of a single frequency and direction is responsible
for the discrete lines in observed doppler spectra; the secoad-order
terms, which provide a continuum, are interpreted physically by a double
Bragg-scattering process that involves an intermediate-scattered radio
wave that may be elther freely propagating or evanescent. A coordinate
transformation provides paths of integration that can btz related to spe-
cific features in observed doppler spectra and also results in a numeri-
cally efficient method for the evaluation of the second~order radar cross
sections,

Doppler spectra calculated from model ocean wave~-height directional
spectra agree generally in shape, power content, and occurrence of swell
with data from radar and oceanographic measurements. It is concluded
that second~order effects and double Bragg scattering are responsible
for most of the features in the continuum of doppler spectra of radar
echoes from the sea. Parameters for estimating wind speed and direc~
tion, based on the variations of radar cross section with these condi-

tions, are consistent with the available experimental data.
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ocean-wave cutoff radian frequency

doppler radian frequencies

gradient operator

divergence operator

curl operator

vorticity
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Chapter I

INTRODUCT ION

In the mid-1950's, Crombie (1955) presented evidence indicating
that radio waves reflected from the sea obey a Bragg-scattering law in
which the ocean waves act as a diffraction grating. He argued that the
sharp spectral lines observed in such radar echoes occur at precisely
the doppler-shifted frequencies expected of signals scattered by ocean
waves whose length is one~half the radio wavelength. The classical
deep~water dispersion relationship where wave speed is proportional to
the square root of the ocean wavelength explains the doppler shift. Be-
cause of the correspondence between ocean wavelength and observed dop-
pler shift, Crombie suggested that ocean wave-height spectra could be
studied by radar. From an experiment conducted at Wake Island, Teague
et al (1973) determined the directional wave-height spectrum of 7 sec
ocean waves by just such measurements of the discrete lines in the re-
turned-signal doppler spectrum.

In addition to the sharp Bragg lines, the echo spectrum from ocean
surfaces contains a continuum or sideband structure (Fig. 1) that cannot

be explained by the simple Bragg theory originally proposed. Hasselmann

fo =195 MH2 FIRST - ORDER

BRAGG LINES

. . A - . i e
. M e o Das a2 it T S ATy Lot st s it e TS R
- S F O T o T g e 3o i ot e -
TS R JEo W or T\ 4 e el S
M oy AR SRR A BT T SIS BT Rp NG ] . .

RECEIVER POWER

je——— 604d8

""8 0 -HB
FREQUENCY fo-f (0.74 Hz full scale)

Fig. 1. BACKSCATTERED POWER VS DOPPLER SHIFT. Recorded at Wake
Island in November 1972, this plot is typical of observed sea
echo. The Bragg-line frequency is fB = 0.14 Hz; transmitter
frequency is fo.




(1971) suggested that higher order wave-wave interactions, which can

-~

also produce surface periodicities of one-half the radar wavelength,
are responsible for the continuum; however, his analysis indicates the
presence of symmetrical sidebands about the first-order Bragg lines
which is a contradiction to the observations presented in Fig. 1. 1In

a more detailed analysis of the scattering problem, based on Rice's

y (1951) perturbation method, Barrick (1972) obtained an expression for

3 the echo power spectrum (actually an expression for radar cross section

per unit area per unit frequency) that produces a sideband structure

more in accord with observations. An approach similar to Barrick's

provides the starting point for the research presented here,

A. Motivation

Measurements at a single radio frequency [Tyler et al, 1973, 1974]
have indicated that radar techniques can provide an order of magnitude
improvement over conventional oceanographic methods in the determination
of the directional distribution of ocean wave-height spectra; however,
such techniques have utilized only the discrete Bragg lines to obtain

this information. Because these lines represent radio-wave scattering

VTR TERTIIY;

from a single ocean-surface spectral component, multiple radio frequen-
cies would be required to obtain data concerning additional components.

The possibility of using the echo-spectrum continuum from a single radar

frequency to determine a complete directional wave-height spectrum pro-

VRPEAR

vides much of the stimulue for this research. In some applications,
single~frequency coverage is a necessity. For example, remote sensing
of ocean surfaces with high-~frequency radio waves that propagate via the

ionosphere is practical at only a few select radio frequencies that de-

pend on the time of observation and the particular area of ocean surface
to be covered. Additionally, at these high frequencies, the ocean waves
producing the Bragg lines are ofter not indicative of the speed of the
wind driving them (Appendix B) and, if remote tracking of wind velocity
is of interest, the sidebands, which are a function of the entire wave-
height spectrum {(Chapter 1IV), become important.




The purpose of this research is to dev=lop a theory to describe and
predi:t doppler or echo spectra (with emphasis on the continuum) and to
relate these spectra to the dynamics of the scattering surface. This
would provide the means to eventually obtain directional wave-height

spectra from the complete radar echo.

B. Organization .

The electromagnetic theory for scattering from ‘he perfectly con-
ducting slightly rough surfaces proposed.by Rice (1951) is developed in
Chaptef I1. The scattered fields derived from Rice's perturbation so-
lution to Maxwell's equations are apblied to the Stratton-Chu integral
[Stratton, 1941] to obtain second-order integral expressions, in terms
of a surface-roughness spectrum for per unit area (or incremental) radar
cross section per unit frequency. The impact of finitely conducting sur-
faces on radar cross section is also considered. Chapter III presents
the hydrodynamic theory necessary to obtain a relationship for the sec~
ond-order wave-height spectrum in terms of first-order spectra. Because
of the nonlinearities in the ocean-surface boundary condition, perturba-
tion techniques must again be employed, this time in the form of Tick's
method [Kinsman, 1965]. Some of the proposed first-order wave-height
spectral models are examined in preparation for the numerical evaluation
of the integral expressions for radar cross section. A model for swell,
which is expected to account for some of the unexplained features in ob-
served radar spectra, is also developed. Attention has been restricted
to deep-water ocean waves in which the effects of the ocean hottom and
shorelines have been neglected. Chapters II and III contain basic der-~
ivations to accommodate the readers who are unfamilier with either radar
or oceanographic disciplines.

In Chapter IV, the scattering theory developed in Chapter II is com-
bined with the hydrodynamic theory from Chapter III to produce second-
order integral expressions for the incremental radar cross section per
unit frequency for ocean surfaces. These expressions are interpreted in
terms of a double Bragg-scattering prccess, and a transformation of co-

ordinates leads to a numerically efficient method of evaluation.




s e ey T

Calculations of radar cross section for several of the first-order

L wave-height spectral models have also been included. Chapter V presents
comparisons between predicted and measursd radar doppler spectra, and

{ Chapter VI provides a summary with recommendations for future research.
Appendixes A and B are computational asides, and Appendix C is a collec-

t tion of theoretical doppler-spectra plots for various wave-height sﬁec-

tral models.

Lt 2

IR

{ C. Contributions

The majnr contributions produced by this work are as follows.

TR S v

(1) Second-order integral expressions have been derived for
the bistatic incremental radar cross section per unit

frequency for ocean surfaces.

(2) Efficient methods have been specified and developed for
evaluating the cross-section integrals.

(e e A i

{3) The relationship between the ocean-wave directional
propagation constants, Bragg condition, and doppler
theory that determines the sign of the doppler shift
produced by individual ocean-wave trains has been phys-

ically interpreted.

(4) Swell has been included in the analyses of second-~order
spectra.

A

(5) Theoretical and observed doppler spectra for known
oceanographic conditions have been compared in detail.

i e o
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Chapter 1I

ELECTROMAGNETIC SCATTERING THEORY

The essence of any radar system is the ability of the system to
provide Information concerning a remote object or target, based entirely
on how the object scatters electromagnetic waves. For example, the dis-
tance from the radar to a target can be detcimined from the time required
for the radar signal to reach the target and return; the radial velocity
of the target can be deduced from the returned radio-wave doppler shift,
and its size can be estimated from the returned signal strength. The
cause and effect relationship between object and scattered electromag-
netic wave must be known, however, so as to relate a particular target
characteristic to a characteristic of the scattered radio wave. This
relationship is expressed by the radar cross section of the target.

Radar cross section o 1is defined as that area which, when multi-
plied by the power density in the electromagnetic field incident on the
scatterer, provides a power that, if reradiated isotropically, would
produce the actual power density at the receive location. It is the
connecting link between the physical attributes of the scatterer (such
as size, shape, velocity, and electrical properties) and the scattered
signal strength observed by the radar.

To understand this connection, consider a radar that is transmit-

ting power P, through an antenna with gain G with respect to an iso-

T
tropic radiator (Fig. 2). The power density at an object some distance

R from the radar is

1
GPT
2
41tR1
3y definition, the power
GP
o x —2
41tR1

if reradiated isotropically, results in a power density,




ETRCIHE A TINIRRE AT 0 ey s e

TR,

-

GRT
2.2 2
2

X333
(4x) R1R

actually observed at the receiver a distance R, from the target. This

2
power density multiplied by the effective area Ae of the receive an-

tenna yields the radar received power PR’

2.2 2
(4n) R,R,
As a result, the effect of the scatterer on received power is expressed

through the radar cross section o.

ANTENNA
Q EFFECTIVE
TARGET : ~ ) AREA: Ae
R
BAIN. & RADAR CROSS 2
’ R, SECTION, &

RECEIVER

va
TRANSMI(TER

Fig. 2. RADAR GEOMETRY. Transmitting power PT, this rader would re-
ceive scattered power (PTGGAe)/(4ﬂR‘R2)2.

Generally, ¢ 1is a function of both the radar-~target geometry and
such target properties as size, shape, velocity, and electrical charac-
teristics; therefore, a single measurement of received power is not suf-
ficient to characterize the scattering properties of an object. Radar
observers, however, usually seek information concerning the physical at-
tributes of a target rather than its scattering properties. Although
complete scattcring properties may not be required to obtain the infor-
mation desired, they may not be sufficient either; nevertheless, it is

6
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from these properties, partial or complete, that this information must
be extractzd when radar techniques are employed.

The purpose of this chapter is to determine the scutierxring proper-
ties, in the form of an expression for radar cross section par unit area,
Jor slightly rough time-varying surfaces. Because the results obtained
here will be applied in Chapter IV to ocean surfaces, an equation for ra-
dar cross section is sought in terms of wave height, wavelength, and wave
direction. These parameters are of interest to the ocean radar observer
and are expressed conveniently in combinédd form as wave-height direc-
tional spectra.

The cross-section derivations that follow are approximate and ob~
tained from first- and second-order perturbation solutions to Maxwell's
equations. Such second-order expressions in terms of wave-height direc-
tional spectra have appeared previously [Barrick, 1970]; however, these
v~ re valid only for wonostatic or backscatter (radar transmitter and re-
ceiver colocated) and grazing-incidence (mean target surface and radar
transmitter coplanar) conditions; see Fig. 3a. Expressions valid for
ihe arbitrary-incidence bistatic geometries illustrated in Fig. 3b will
be derived here.

Section A discusses Rice's [1951] derivations for fields scattered
by a time-invariant slightly rough random surfece. Section B uses the
Stratton-Chu integral [Stratton, 1941] to reformulate the Rice solutions
in a form suitable for the calculation of incremental (per unit area)
radar cross section. First- and second-order perturbation solutions for
radar cross section in terms of random-surface spectra are derived in

Section C. Sections D and E expand the Rice thecry to include time-

_varying and finitely conducting surfaces, respectively. The specifics

of ocean-surface radar cress section are described in Chapter IV after

a discussion of hydrodynamic theory in Chap er III.

A. Rice's Scattering Theory

1. Surfaces and Statistics

Because ocean surfaces appear to be both random and regular

(or periodic) depending on the height from which they are viewed
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Monostatic grazing-
incidence radar
(transmitter and
receiver colocated)

b. Bistatic radar
(transmitter and
receiver separated)

Fig. 3. MONOSTATIC AND BISTATIC RADARS. Grazing incidence occurs when
radar transmitter s pointed at horizon.

(Kinsaan, 1965], it seems only natural that the matiher tical model rep-

resenting them contains both features. Scattering

such a model
(Fig. 4) for time-invariant surfaces has been a:

.e. by Rice [1951].
Following Rice, the surface height f(x,y) 1is represented by
a double Fourier series with gaussian-distributed complex ranc

28fi~
cients, where

f(x,y) = ji P(m,n) expl-ia(mx + ny)]+ (2.1)
mn

i
Because up to eightfold summations will be encountered, the convention

of not repeating the 2 symbol for each sum will be maintained through-
out.
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Fig. 4. PERIODIC ROUGH SURFACE. The surface profile at any point
(x,sYo) is duplicated at all points &, + mL, y, + nL), where
L is the spatial period and m and n are integers from -« to

@,

and
a = 2i/L (L designates the spatial period of the surface)
1 =n-1

-0 < m,n < e
Because the surface height must be real, it is required that
P(m,n) = P*(-m,-n)

vhere * denotes the complex conjugate.

Ocean wave-height measurements [Kinsman, 1965, Ch. 7] indicate
that a gaussian distribution closely represents actual wave-height dis-
tributions ; however, there are obvious reasons why the actual distribu-
tion cannot be truly gaussian. One impressive reason is the small but
finite possibility of encountering ocean waves several hundreds of feet
high, or higher, if the wave-height distribution is exactly gaussian.
Backed by measurements and compelled by the need to simplify the ensuing

mathematics, a gaussian distribution will be assumed.
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E The statistics for P(m,n) are summarized [Rice, 1951] as
e s L follows:
(P(m,n)) = 0 (2.2a)
L {(p(m,n) P(u,v)) =0 (u,v) # (-m,~-n) (2.2b)
‘i “W(p,a)
(P(m,n) P*(m,m)) = (P(n.n) P(-m,-n)) = ZHL.A) (2.2¢)
L
. where
p = am = 2mm/L
an = 2mn/L

(+)

statistical average over the range of the argument for
fixed m,n

w(p,q) = surface~-roughness spectrum

SHAIR - LA < St 4l YZ‘WWW G
(]
1

Cordition (2.2a), the zero-mean assumption, simplifies the
mathematics to follow without consequence to the results because each
pectral component of the ocean surface is assumed to have the same mean
level. Condition (2.2b), the independence assumption, is required for
{ the following aralysis but is not strictly valid for ocean su.faces.

The nonbreaking deep-water ocean-wave profiles of interest here deviate
slightly from true sinusoids [Kinsman, Ch. 5] and, therefore, contain
higher order harmonics having related amplitudes in a Fourier represen-

; tation. Nonlinear wave-wave interactions producing related harmonic

IR A T SR R

terms also invalidate the independence assumption. Because a wave-pro-

file deviation from a sinusoid can be interpreted as resulting from the

TP

wave-wave interaction of an ocean wave with itself [Stewart, 1974], a

f single phenomenon can be considered responsible for the violation of

i

(2.2b). Fcrtunately, the effects of nonlinear wave interactions are

small [Kinsman, 1965, Ch. 13] and can be represented as second-order
E perturbations to a first-order surface profile satisfying (2.2b). The
E ‘ roughness spectrum describes only this first-order profile, although
second~order effects are examined in Chapter II1I and are included in
the final expression for radar cross section (Chapter IV). Condition

(2.2¢) requires a more quantitative explanation.

i ¢ 10
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The ocean wave-height spectra to be considered are obtained
as the Fourier tranzform of the surface~height autocovariance function
when the surface model is a wide-sense stationary process. The autoco-

variance of the Rice surface (2.1) is

(?(xl,yl) . f*(xz,y2)>

<z P(m,n) exp[—ie (mx1 + nyl)]
mn

R(xl )xz ’yl 'yZ)

. z wmnw)wﬂﬁmmz+w%ﬂ>

m'n*
Because (P - P*) =0, unless m=m' and n =n",

R(x,y)

R(xl - X5 Vg - y2)

2 (P(m,n) P*(m,n)) exp{-ia[m(x1 - X,) + n(y1 - Yz)]}

mn

Use of the two-dimensional Fourier transform,

1
(2:1)2

f[R(x,y) exp[—ia(mox + noy)] dxdy
=00

provides the surfa.e spectrum

N x 1 R \
W(mo,no) —;n‘ (P(m,n) P*(m,n)) (2102 ﬂexp{ ia[x(mo +m) +y(n° +n)]’ dxdy

The above integrals are expressions of the Dirac delta func-
tion defined in one form [Bracewell, 1965, p. 357] by

11
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1
8(k) = o e dx

therefore,

W(mo,no) =mzn (P(m,n) P*(m,n)) S(am + am ) d(an + an_)

If the double summation is treated as a double integral ,+ then

[« ]
W(mo,no) = f!o‘ {(P(m,n) P*(m,n)) 5(p + po) 5(q + qo) dmdn

vhere p=am, q=an, p =am , Qq = an .

o o o o
Changing variables from m to p, n to ¢q, etc. 1leads to

o 2
Wip_,q) - f! (—2%) (P(m,n) P*(m,n)) &(p + p,) 8(qa +q ) dpdq

which, with the aid of the delta-function sampling property, integrates
to

2
_ * L
W(po,qo) = <p(mo,no) P (mo,no)>(—2ﬂ)

for any P, and q,- Generally, then, the average of P(m,n) P*(m,n),

in terms of the surface-height spectrum, becomes

2
(P(m,n) P*(m,n)) = (—2%‘) w(p,q)

TDetails of the limiting process for transition from summations to inte-
gratiors can be found in many texts [Cheng, 1959, Ch. 5].

12
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Rice's roughness spectrum is seen to be 22 larger (one factor
of 2 for each dimension of the Fourier transform) than the surface-height
spectrum as defined by the Fourier transform of the surface-height auto-
covariance. To facilitate reference to Rice's work, the roughness-spec-
trum definition will be employed throughout the following derivations;
when the alternate definition is used, the differences will be noted.

2, Electromagnetic-Field Expansion and Boundary Conditions

An initial step in determining the radar cross section for the
surface in Eq. (2.1) is to relate the scattered electromagnetic field to
the incident field. This can be simplified by assuming the surface tobe
perfectly conducting. Although ocean-surfece conductivity is not infi-
nite, it is sufficiently high for the effects of finite conductivity to
be expressed as a perturbation to the perfectly conducting theory (Sec-
tion E).

The incident field can be represented by a plane wave propagat-
ing in the x,z-plane (Fig. 5). Described by its electric-field vector
E exp[~ip(ox - yz) +iwt], the plane wave is considered either horizontally

Ey SPECULAR
INCIDENT RAY
RAY

ROUGH SURFACE

Fig. 5. INCIDENT FIELDS AND SPECULAR DIRECTION. and Ey oare
vertically and horizontally polarized components of the incident
electric field.

13
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polarized (E perpendicular to the x,z-plane) or vertically polarized
(E in the x,z-plane). Generally, E is a complex vector of the form

E 8, where £ is a unit vector in the direction of ﬁ, and E is a
The

»

F
N e
-~

RSP

complex quantity assumed here to have unity magnitude ([E| = 1).
- coefficients O and % are the sine and cosine of the incidence angle
: 1

‘ 2] illustrated in Fig. 5, and B is the free-space propagation constant

2 i
E
- 2n/\, where. A 1is the wavelength of the incident wave. The time factor

RTTTNIEY LR e

exp(iwt) will henceforth be assumed, where ® is the radian frequency

of the wave.
,\ Following Rice, the total electromagnetic field above the sur-

face is expressed as a sum of the incident field, fields reflected in the

epbsence of surface roughness, and those fields scattered because of sur-

it g\ i

face roughness. Waves reflected in the absence of surface roughness
propagate in a single direction (specular) determined by Snell's law
(Fig. 5). Waves scattered by surface roughness can propagate in all

A

directions, including specular, and will be referred to as nonspecular
scattered waves. Total fields are used at this point to satisfy the
boundary conditions at the surface. later, scattered fields are obtained

P

7

T

by removing the incident field from the total-field expressions.
Because surface roughness is periodic in the x,y-plane (Fig.
4), the nonspecular scattered fields will also be periodic, with the

SRR AR 2

same period, in this plane and, therefore, can be expressed by a two-

dimensional Fourier series. Solving for the coefficients of this series

Bt

in terms of the roughness coefficients P(m,n) produces the desired

g

scattered-field expressions as a function of surface roughness.
For horizontally polarized incident waves, components (Fig. 6)

of the total field E(x,y,z) are

o E = ZE A  E(m,n,z) (2.33)
; x mn
: m
E_ = 21 sin Byz exp(-iavx) + 2: an E(m,n,z) (2.3b)
y h
E = \ ¢ E(m,n,z) (2.3¢)
z ﬁﬁ mn 1o :

14
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Fig. 6. TOTAL FIELDS ABOVE A SURFACE. The total electromagnetic
field at any point above a surface is a vector sum of the specu-
lar and nonspecular scattered fields plus the incident field.

where

E(m,n,z) = expl-ia(mx + ny) - ib(m,n) z] (2.4)

and the summations are from -« to .

24 2—
To satisfy the wave equation V E + B E =0,

22
am +a2n2<82

/2 22 22)1/2
B ~am =~an

b(m,n) = (2.5)

1/2 .
-1 (azmz + azn2 - BZ) azmz + a2n2 > ﬁz

For b(m,n) imaginary, the negative root is specified to provide the
decaying, rather than the increasing, exponential solution to the wave

equation that E(x,y,z) must satisfy.

15




The first term in the expression for Ey is the total field
that would exist above a perfectly conducting fiat plane. For any in-

cidence angle 91, this term can be written as

exp[-ip(ox - 9z)] - exp[-ip(ax + 9z)] = 2i sin (fyz) exp(-ipox)
S ~ o mm——  —— ~ - —
incident reflected total

where « = sin Gi and 7y = cos 6i (Fig. 5).

To determine the Fourier coefficients Amn’ an, and Cmn’
the above term must be periodic, thereby restricting incidence angles
to the discrete values given by B sin 9i = 2xv/L = ay, where v is
an integer. Equation (2.3b) contains this restriction. For large L,
almost any desired angle of incidence is permissible. later, L 1is
allowed to become infinite, thereby removing this restriction on 61.
These coefficients are found by satisfying the tangential electric-
field boundary condition to order Bzfz(x,y); higher order terms are
neglected.

The tangeﬁtial electric field at any point on the surface can

be written as

E-n(E.n) =0 (2.6)

where n is the unit vector normal to the surface at this point (Fig.
7), and O is the null vector. Expanded into its components, Eq. (2.6)

becomes
E -n(En +En +En) =290
x X X X Yy Z Z
E -n(En +En +En)=20 2.7
y y X x yy zZ Z
=0

FE - n(En +En +En)
z zZ X X vy z z

The unit normal components can be written [Sockolnikoff ana Redheffer,
1958] as

16
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~1/2
n=—f<1+f2+f2)
x X y

X
-1/2
n = -f (? + f2 + fz (2.8)
y y x y
-1/2
n = (} + fz + fz)
Z X y

where fx and fy are the partial derivatives of f(x,y) with respect

to x and y and are assumed to be of order f.

Enorm= n ("'Etot) Etot

Etan= E tot “Enorm
UNIT NORMAL,H

Fig. 7. FIELD COMPONENTS AT SURFACE BOUNDARY.

Writing the first two boundary conditions in Eqs. (2.7) in
terms of the unit normal components and retaining only terms of order

2 2
B f  provides the boundary conditions tc second order,

n
(=]

E +fE
X X 2
(2.9)

<]
+
2]
i
1]
[=]

Expansion of the field ccmponents in Egs. (2.3) in increasing
orders of f at the surface yields

sin Byf = Byf + order (f3)

17




E(m,n,?) = [1 - ib(m,n) £ + ...] E(m,n,o0)
El.
1 A =AY AP,
mn mn mn
L where A;i) is of order pBf and Aéi) is of order Bzfz. Similar

expressions exist for an and Cmn' The boundary conditions (2.9)

for horizontal polarization now become

> [A(l) +a® g cm] [1 - ib(u,n) £] Em,n,0) =0

mn mn X mn
mn
and
21 exp(-iavx) - Byf + z [B;;) +Bn(1121) +fnd(n];)] (1 -1ib(m,n)f) E(m,n,0) = 0

mn
(2.10)

when terms of order B3f3 and higher are neglected.
Equating separately the first- and second~order terms in

(2.10) to zero results in

1
2 Axfm) E(m,n,0) = 0 (2.11a)
mn
(1)
21 exp(-iavx) Byf + an E(m,n,0) =0 (2.11b)
mn
and
(2 (1) D]
EE fhn) + fx”hn -~ ib(m,n) £ A.mn ] E{m,n,0) = 0 (2.11c)
mh
[ (2 @ @]
z Lan) + fyCmn) - ib(m,n) f an | E(m,n,0) = 0 (2.114)
mn
Expression (2.11a) specifies that A(l) = 0, thereby leaving three

2) 1) _(@2) 1
equations and four unknown coefficients, Amn s an ’ an , and Cmn .
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The additional equation required for the solution of these unknown coef-
ficients develops from the divergence theorem V. E=0 which, when
applied to (2.3), provides

am A(i) + an B(i) + b(m,n) C(i)
mn mn mn

=0

to each order i. Detailed solutions to these equations have been de-
rived by Rice (1951).

The coefficient solutions applied to the field equations (2.3),
with the incident field Ey(incident) = exp[-ip(0x -yz)] removed, de-
termine the scattered fields at any point above the surface in terms of
the random-surface coefficients P(m,n). For horizontally polarized

incident waves,

E_ = -2By Z E(m,n,z) Z az(m - k) £ Q(m,n,k,£)

mn

e

E = -exp[-ip(ax + 72)] - 2By Z E(m,n,z){ip(m - v,n)

y mn
Y [az(n -0 - bz(k,z)] Q(m,n,k,z)} (2.12)
Y
E, = 2By 2 Eé-’%ﬂ-’-:—:{)-zi-)- %ianp(m - v,n)

b

[ata‘(&(m2 + n2 -mk = ng) - anbz(k,,e)] Q(m,n,k,z)}

=
>

where Q(m,n,k,4) = P(k~v,4) P(m-k,n - £)/b(k,£), and summations are
again from -~ to w,

A similar perturbation procedure applied to vertically polar-
ized incident waves yields
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E_= -y expl~ip(ax + yz)] + 2 25 E(m,n,z){i(aam ~ B) P(m - v,n)
mm

+ [ {m - k)(v-k) B+ (B~ oam) b (k, 2)] Q(m,n,k,z)}
kg

= 2a 2{ E(m,n,z){ianp(m - v,n)
mn

+ [é(n - (v -~ k) B ~ anz(k,z)} Q(m,n,k,z)} (2.13)
kg

. E(
E, = Q expl-ip(ox + yz)] + 2 EL -3%;2ﬁ§l

. {1[a(m-v)B +ab2(m,n)] P(m~-v,n) + [ (k - v)(m +n2—mk-n,'£)8
ki

B,[OB.(m2 + n2) - mB] bz(k,.@)] Q(m,n’k!'e)}

Expressions (2.12) and (2.13) represent the scattered fields
above a slightly rough surface in terms of the surface parameters and
are the desired results from Rice's theory. The price paid for these
expressicns is the restriction to slightly rough surfaces (Bf, Bf ’ Bf
must be small compared to unity). An analysis csrried to order (Bf)
is required to estimate the error in these second-order results; however,
such an analysis will not be undertaken here. Instead, measured and pre-
dicted radar-received powers will be compared in Chapter V to determine
the validity of the second-order theory.

20




W

BT AR AT NSl RN PN 1

s

™~

-~
o™

s

B. Stratton-Chu Integral

The previously derived expressions for scattered fields, {2.12) and
(2.13), assume a surface of infinite extent with plane waves incident on
the entire surface. Most practical radars, however, have limited cover-
age and only portions of the total target surfoce may fall within this
coverage. It is convenient, therefore, to describe the scattering prop-
erties of such large surfaces in terms of a radar cross section per unit
area. The fields scattered from a finite surface area must be known.
however, to determine this incremental radar cross section. The trans-
formation from infinite to finite surface-scattered vector fields was
first derived by Stratton and Chu [Stratten, 1941, pp. 464-470] and,
henceforth, will be called the Stratton-Chu integral.

The startinz point for this integral is a vector form of Green's
second identity. lLet V be a closed volume (Fig. 8) bounded by a sur-
face S, and let P and 6 be two vector functions of positioa which,
along with their first and second derivatives, are continuous throughout
V and on S. Applying the divergence theorem to the vector P X V X 6
and expending the volume integral ylelds the vector formofGreen's first
identity,

fv.@xvxa>dv= WXP-UXG-F - VxVxB dv

\%

<‘“~

=f(P><VXQ)»Hda (2.14)
S

i

where n is the unit normal to the surface 8. Interchanging the roles

of P and 6 and subtracting the resultant integral from (2.14) leads

to the vector form of Green's second identity,

f(E-VXVXﬁ-F-VxVXE)dv=f PXxVXQ-QXVXP)onda
v S
(2.15)
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Under these conditions, Green's second identity becomes
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f ~-10pJ o +EZ—?-dv= [ (~iwpm X H) ¢ + (n XE) XV + (0 + E) V0] da
Vv

S
(2.16)

Now consider a source-free volume enclosing a small sphere about
the point (x!',y',z') as illustrated ir Fig. 9, where the sphere has a

surface S1 with a unit normal 51. Equation (2.16) then becomes

f [-iwp(m X H) ¢ + @ X E) XV0 + (n - E) Vo] da
S

v [ [ xBo+ @, xB xv0 + G, - Bve] e, =0
S
1

When the radius of the sphere tends to zero with o = e-iar/r, where

2 2 2 2
r =(=z-x'"Y +(y-y") +(z-~-2z')" and B = 2n/\, Stratton has shown

that the surface intagral over Sy is ~4xE(x',y',z'). Because the
point (x',y',z') can be anywhere within V, the E-field at any point

in V can be written as an integral over the surface fields,

E(x',y',2!) = ;11—1: f [-iwp(n XH) 0 + (@ X E) X Vo + (n - E) Vo] da
S

(2.17)

SURFACE S

n, ¥ SPHERE WITH
 SURFACE, S,

- ENCLOSING
 POINT (x3y,2") ,

Fig. 9. EXTERNAL POINT ENCLOSED BY VOLUME V.
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Now, let V be the hemisphere enclosed by S + S1 (Fig. 10) and
let the radius of the hemisphere extend to infinity. From Eq. (2.17),
fields at iy ywoint above the x,y~planes can be calculated if they are
known on 31 and S. For convenience, n is directed into the volume

with no effect on (2.17).

RADIUS GOES TO o

SURFACE
S

Fig. 10. HEMISPHERICAL VOLUME WITH TWO-PART SURFACE. The
surfa:.e enclosing V is composed of a finite S and an
infinite Sq. Nonzero filelds are assumed only on S.
vleids at point (x',y';z') are the result solely of
Zields on S and charges on contour C ariscing from

discontinuities in the fields between S and Sl'

Si~p y assuming that the fields on S, are zero and performing the

integration of (2.17) over the finite area1 S violates Green's theorem
condition that the fields must be contimious over the entire surface.
Discontinuities in the tangential fields result in surface current den-
sities at the points of discontinuity. Only by accounting for these
discontinuities can the fields above a finite surface be made to conform

to Muxwell's equations. Stratton shows that the integral

1 — -
= Tnive £V<I>H + de

over the contour C enclosing the surface S 1is the term that must be

included in (2.17) to make the interior filelds consistent with Maxwell's
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equations and to account ror the field discontinuities along C. In-

cluding the contour integral in (2.17) produces the result obtained by
Stratton,

- 1 - - - - - -
E(x',y',z') = in f [-iwp(n X H) ¢ + (n XE) XV + (n « E) V0] da
S

1 - -
—mivq)ﬂ - de (2.18)

Two modifications render (2.,18) more convenient for the calculation
of E(x',y',z'). The first changes the contour integral to a surface
integral through Stokes's theorem; the second changes the mixed-field
expression to one in terms of E alone.

Consider the contour-integral portion of (2.18) in component form,

1 |a W= = A M= = A 90 = -
m[axﬁs;“'“*%ﬁ&;“'d”%ﬁa“'dc]
(2.19)

where Qj are unit vectors along the jth Cartesian axis. In this form,

Stokes's theorem,

%V-dE=I(VXV) -dE:f(va) «nds
(o] s S

can be applied to the vectors d¢/3x H, 3¢0/dy H, and 00/ H, where
V 1is any vector and n is the unit normal to the surface element ds.

The partial differentiation of ¢ is simplified when r is ex-
pressed in the geometry of Fig. 11; then,

o < SXp(-1pr) _ expl-ip(R - B/B - 0)]

r r

(2.20)

where

B = B(sin 6 cos ¢ Qx + sin @ sin ¢ 2& 4+ cos 0 a;)
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w
[

[B] = 2n/A

R2 = x'2 + y'2 + 212

The vector 5 is the radial vector describing the position of the ele-

mental surface area ds on the surfaze S,

=D A
p=xa_ + yé‘y +za, (2.21)

Combining Eqs. (2.20) and (2.21) yields

) ____'g_x_p_g;%i_@_)_ explip(x sin B cos F + y sin 8 sin F + z cos O)]
(2.22)

where, for large r, letting R = r 1in the amplitude of ¢ has a
negligible effect. From (2.22) the partials of ¢ can be obtained as

o)
&=1Bsin6cosg®=1ax<b
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Applying Stokes's theorem to the x-component of the contour integral

gives

1 d = - 1 o = -
Zrive ﬁa'i'n 'd°=4ﬂiweL[vx(§EH>] ©nds

Q/

Bx _ _
= Toe JS; v x (3H)] + n ds

1 B
x —-— — — —
=4“we[s (Vo X H) 'nds+£¢(VXH) -nds]

,, ¢ (2.23)

Similar expressions exist for the y- and z-components of the contour
integral and combine with (2.23) to produce the total-vector contour
integral,

—-1—-§v<b§-d'é'=—§—f [(VO X H) - n + iwedE - nl ds
C S

4niwe 41WE (2 . 24)
vhere V X H = iweE (one of Maxwell's equations in time-harmonic
source~free form) replaces V X H in (2.23).

With the following auxiliary relationships,

(VO XxH) +n=-(n XH - V0
Vo = 160
(2.25)
8= wnjpe
B
=
B B
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"Eq. (2.24) can be incorporated into the total-field expression (2.18)

to yield
= iw -ifR - - € ,—~ - ~ S —_ == A
E(x',y',z'):—-%i—ﬁ—f{—(nXH)+J:(n><E)xB+{3-(nxn)s
S 8]
. PP s (2.26)

which is the Stratton-Chu integral rewritten as a single-surface inte-
gral. It expresses the field, at any point (x',y',z'), caused by the
fields on a given surface S, vwhere S may be only a portion of a
larger surface. Rice has conveniently provided expressions (2.12) and
(2.13) for the scattered flelds everywhere above a slightly rough sur-
face. These fields, when evaluated at the scattering surface, can be
used in the Stratton-Chu integral to chtain the ficld E(x',y"“z') scat-
tered from a finite portion of the surface.

A subtle but important point concerning the Stratton-Chu integral
is ~:at the scattering surface need not be the surface over which the
integration is performed. For example, the fields derived from Rice's
theory can be evaluated at any surface; however, no matter where evalu-
ated, they remain the fields caused by the scattering surface. As a re~
sult, a surface convenient for the integration of (2.26) can be chosen,
the fields scattered by the slightly rough surface can be evaluated at
this new surface, and the Stratton-Chu integral then applied.

A convenient surface in evaluating (2.26) is one contained in the

z = 0 plane; then, n = 5; and

nXH=-Ha +Ha
yx xy
nXE=-E& +EA&
yx Xy

Using Maxwell's curl equation for electric field

VXE = -1ugH

28
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H can be expressed as partial derivatives of E,

o
|t

1 OE OE
- x - z
y iop \ 0z ~ ox
1 aEz _afy_
x  iwp \ Oy oz

Substituting these components of H in (2.26) results in an integral

-]
)

expression to which the E~fields derived by Rice can be applied directly,

-iBR OE OE OE. OE
Ex',yhz') = & A ' I
A 4R s ox oz /) °x Oy dz 4 J

+iB[E cos 84 +E cos 6 &
X x y y

(E sin 6 cos @ + E sinGsin,@')Q]
* y zz=0

[/OE OE OE OE
- "EE"E! sin 0 cos @ + Fyz_-B?Y sin O sin
A z=0

- —

+ |sin 6 cos & fa‘x +sin 6 sin & é‘y + cos 6 Qz] eiB‘p ds

-

(2.27)

This equation plus (2,12) and (2.13) are the tools to be used in deter-
mining per unit area radar cross sections for slightly rough random sur-

faces.
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C. First- and Second-Order Radar Cross Sections

The following discussion is the first of three in which the radar
cross section per unit area for a slightly rough surface is derived. At
this point, the surface is still perfectly conducting and motionless.
later (in D and E), the time-varying and finite-conductivity aspects of

the rough surface will be described.

1. Radar Cross Section as Power-Density Ratios

Radar cross section has been defined as that area o where,
vhen multiplied by the incident power density Si’ provides a power
chi that, if reradiated isotropically (cSi/4nRz) would produce the
actual power density SS at the receiver a distance R irom the tar-

get. As an equation,

(2.28)

For time-harmonic electromagnetic waves, time-average power

density S is used ;
- 1 = g
S=-§Re(E><ﬂ)
when electromagnetic fields are expressed in complex form. For waves

propagating in homogeneous media with permittivity ¢ and permeability
T E and H are in space quadrature with E = Qp/e H; therefore,

2
Re (EH*) = —EL—
2 \p/e

s =

=

From (2.28), the radar cross section becomes

2
2 [E|
2

ol

o = 47nR
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If the scatterer is a surface of size L X L, the radar cross section

per unit area becomes

2,2
5 o |E |I7/L
— = 4R —————
L [E, |

Because only cross sections per unit area are considered henceforth, o
can be used to represent them without confusion.
To be consistent with Rice's work, the incident-field magni-

tude is taken to be one; then, o becomes

2
2 IEsl

L2

A field scattered from the slightly rough surface described
in Section B is a random variable, and an average radar cross section
o can be defined, where the average is taken over all possible rough
surfaces of the same class. Later, when time-varying surfaces are in-
troduced, Es is generated by an ergodic random process in which the
time~average power is equated to the statistical average power, and the
notation returns to o rather than o. In either case, the quantity
(ESE;) must be calculated. For a time-invariant or static surface, the

average radar cross section is

- 2 <ESE;) '
0 = 4xR —~—p— (2.29)
L~

2, Scattered Fields from Rough Surfaces of Finite Extent

The fields to be used in the radar cross-section equations
presented above are found by performing the Stratton-Chu integration of
Rice's field expressions over a planar surface of size L X L, where L
is allowed to be the same as the period of the rough surface defined by
Eq. (2.1). As a specific example, consider a vertically polarized
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incident wave (Fig. 12)., The Stratton-Chu integral (2.27) requires that

the infinite-surface scattered fields [Egs. (2.13)] and their partial

derivatives must be evaluated at the surface over which the integration

is performed. Applying (2.27) to the x-component of the scattered field,

evaluated at z = 0, yields

2:|.e-:lBR

/2
Ex(x',y',z') = 411Rl jj —-g a - Olz s:l.n2 6 cos2 g + v cos 9) e-iaax
=L72

Ry o o SRR S S TR

+ z [b(m,n)(l - si.n2 g cos2 6) + P cos 6] E(m,n,0)
m

. [i(oam - B) P(m - v,n)

* {az(m ~x)(v - k) B + (B - cam) bz(k,z)} Q(m,n,k,z)]

=
Lo

+a Z - b(m,n) E(m,n,o)[iomP(m - v,n)

mh
3 , + 2 {a(n - Z)(V - k) B - mbz(k,ﬂ)} Q(m'n’k’z)
4 & |
+ mE'n [a!!l(Sin2 8 cos” g-1) +an sin> 6 sin @ cos ¢] LE‘g!?m,r’lx,lc;):l
E | . [i{a(m -Vv) B+ ob‘)‘(m,n)} P(m - v,n)
i ¥ {aa(k - W® +n° - mk - np) B
k2

+ aL[O(a(m2 + n2) - mB] bz(k,!,)} Q(m,n,k,z)] ei[%-p dxdy

(2.30)
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Fig. 12. SCATTERING GEOMETRY--VERTICALLY POLARIZED INCIDENT PLANE WAVE.

The integration of this equation can be readily performed because the

only terms involving the variables of integration (x and y) are ex-

ponential, exp(-ipox), exp(iB:p), and
E(m,n,0) = expl-ia(mx + ny)]

where these variables are separable. The integrals to be evaluated are

2
ﬁ expl-ia(mx + ny)] exp(p(sin 0 cos ¥ x + sin 6 sin ¢ y)] dxdy
2172

and

L/

;

2
f exp(-i30x) exp[p(sin 0 cos @ x + sin 8 sin @ y)] dxdy
<L/2

The results of integration are the familiar sinc(x) =sin(x)/x

functions,
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Lz[s:tx {(B sin 6 cos & - am) L/2}] . [sin {(B sin O sin ¢ - an) L/2}
(B sin 6 cos @ - am) L/2 (B sin 9 sin @ - an)
\-—/—N W\I/

sinc(XR) sinc(YR)
(2.31a)

and

Lz[sin {(g sin 6 cos & - B) L/Z}] . [sin _{(p sin 0 sin ¢) L/2}
(R sin 6 cos ¥ - Ba) L/2 (B sin 6 sin 9) L/2

sine (X1) sinc(YI)
(2.31b)

The definitions XI, YI, XR, and YR allow tue x-component of the

scattered field to be written in compact form,

21 1FR
4xR

. in-

+Z ':b(m,n)(l - sin2 o} cos2 2 +B cos 6]

mn

Ex(x' ,y',z') =

(1-a2 sinzecos2 @ + ycos @) sinc(X1) sinec(YI)

o

» sinc(XR) sinc(YR) [Ex terms]

—

+ Z - ab(m,n) sin2 0 sin ¢ cos &
mn

. sinc(XR) sinc(YR) [Ey terms]

s

2 e 2
+ [am(sin @ cos” - 1) + an sin” 0 sin ¥ cos ,(/1]

-

3

L

. sinc(XR) sinc(YR)
b(m,n)

[EZ terms ]; (2.32a)
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where the [Ex terns], [Ey terms], and [E_ terms] are the coefficients
of E{m,n,z) in the x-, y~, and z-cowponents of the scattered fields in
(2.13), respectively. The IEy terms] are actually the coefficients of

E(m,n z)/b(m,n). From (2.13), they are

[Ex terms] = i(cam - 8) P(m - v,n) + z [az(m - k)(v - k) B

k2

+ (B -~ Qam) bz(k,l)] Q(m,n,k, £)

[Ey terms] = iomP(m-v,n) + z [a(n - (v -k) p - ombz(k,z)]q(m,n,k,z)
ki

. r 2 N (3
[E termsi = iLa(m ~v) B+od (m,n)} P(m - v,n) + ' {a (k - v)
z &7

. (m2 +n2 ~mk -ng) B+ sa.l:OtaaL(m2 +n2) —mB] bz(k,z)} Q(m,n,k,.)

The y- and z~components of the scattered field for vertically

polarized plane-wave incidence are obtained in the same manner. They are

2 2
ey = 0 sin” 0 sin ¥ cos & sine(XI) sinc(YI)

2

(-ipR) .2
B gt ary o 2o PO i {e
y

2
+ Z -b(m,n) sin” 6 sin ¥ cos 8 sinc(XR) inc{YR) [Ex terms]
mn

+a z [b(m,n)(l - sfl.n2 e s:l.n2 2) + B cos 6]
mn

- sinc(XR) sinc(YR) [Ey terms] (2.32b)
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4—25 [an(sin2 6 sin2 Z-1) +anm sinA 9 sin & cos ﬁ]

mn
_ sinc(XR) sinc(YR) [E terms] (2.32b)
b{(m,n) z C;nt
and
(—1BR)25
2ie L° Vg 2
gt ) = e s X
Ez(x ,¥',2") IR Qz [y sin @ cos @ + & sin 9 cos & cos 8]

+ 8inc(XI) sinec(YI)

- 25 sin 6 cos ¢ (B + b(m,n) cos 9]
mn

. sinc(XR) sinc(YR) [Ex terms]

-a zz sin 0 sin ¢ [B + b(m,n) cos 6]
mn

Y AR

« sinc(XR) sinc(YR) [Ey terms]

§
% -
§ , + ZL gin 6 cos 6 {am cos @ + an sin ({1
: mn
£,
sinc(XR) sinc(YR)
. ECnn) [Ez terms]} (2.32¢)

Similar expressions result when the incident wave is horizontally polarized.

3. Polarized Components of Scattered Fields

Becausc power received from a scattered fTiecld generally will

depend on the polarization of the receive antenna and of the wave

36
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incident on the scatterer, it is convenient to express the scattered
field in terms of polarized components. Incident waves have been de~
scribed as either horizontally or vertically polarized; likewise, scat-
tered fields can also be expressed in terms of horizontally and verti-
cally polarized components. 1In the spherical coordinates shown in Fig.
13, the direction $¢ is perpendicular to the direction of propagation
51_ and to the plane defined by é‘r and the z-axis. Scattered-field
components in the Qb direction are horizontally polarized according
to the definitions used for the incident waves; similarly, field compo-

nents in the Qb directiorn are vertically polarized.

A
e ar A
NP5
/ p \\
/ 8 "
/ /. Wg \
! ~i9' \ 6 \
/ \
/ / ‘\ \
ST
| /
I ¢ \_\. ‘/
i A

Fig. 13. SPHERICAL COORDINATE SYSTEM.

In terms of the Cartesian components of the scattered field
(Ex, Ey, and Ez), the vertically and horizontally polarized compo-
nents (EG and Eg) are

Ey = Ex cos ¥ cos B + Ey sin ¢ co? 6 - E sin O (2.33a)
and
Eg = -Ex sin ¢ + Ey cos ¢ (2.33b)
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vhere Ey, Ey’ and Ez may be the result of either vertically or hor-~

izentally polarized incident waves.

fowr rcssible ~ombinations fer ridar cross sention,

vertical incident, vertical reflected

vertical incident, horizontal reflected

horizontal incident, horizontal reflected

EQ §Q éq é‘21
it

horizontal incident, vertical reflected

Only GVV will be calculated here (results for GHH will be presented
at the end of this section), but the same procedure used to obtain va
and OHH applies to the cross-polarized GVH and GHV as well.

}

4, o
- Calculation of UVV

The average radar cross section EQV is derived in two steps,

using Eq. (2.29). First, the average (EeE;) is found, and then the

3 limit of <E9E5)/L2 as L goes to infinity is taken, thereby convert-
*?g ing sums to integrals.
] From the field components in (2.32), the vertical field EG
3 according to (2.33a) is
1
ar (1BR) 2
: _ 2ie L B
: E6 = IR { ) (7 + cos 0) cos @ sinc{XI) sinc(YI)
\ N

3 A
3
4 ‘ 4-S> cos § (B + b(m,n) cos 6) sinrc(XR) sinc(YR) [Ex terms]

B (2.34)

+ e ﬁ) sin #f (B + b(m,n) cos 0) sM(XR) sinc(YR) [E terms]
C

¢ + 25 = cos 6 (am cos @ + an sin §) ginc(XR) sinc(YR) [E terms]
E b(m,n) z
- ( D
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With the abbreviated notation,

4
EqEg = "%‘E [aA* 4 BB* + cC* + DD* + (A*B + B*A) + (A%C + C*A)
4x“R

+ (A*D + D*A) + (B*C + C*B) + (B*D + D*B) + (C*D + D*C)]
(2.35)

a. Zero and First Order

Zero-order terms are those products in Eq. (2.35) that
involve no random variables P(m,n); first-order terms have products of

two random variables. Because P(m,n) are zero mean and gaussian, the

product of three random variables averages to zero [Thomas, 1969, p.

3 641.

;r Only one representative term from each of the above com-
2 binations will be examined here. The AA* term involves no randomvari-
; . ables and its average is

LA

2
(AA*) = %' {(y + cos 6)2 cos2 g sincz(XI) sincz(YI) (2.36)

The A*B term is obtained from Eq. (2.34) and from the

definition of the [Ex terms] in Section C.2. When products involving
a single random variable are omitted (these average to zero), A*B te-~

comes

o

(v + cos 6) cos @ sinc(XI) sinc(YI) z cos ¥ [B +b(m,n) cos 6]
mn

A*B=-:2-

+ sinc(XR) sinc(YR)

&

[az(m - K)(v - k) B + (B - omm) bz(k,.e)]

- Q(m,n,k,2) (2.37)

Recall that

_P(k - v,4) P(m -k, n - f)
Q(m’nikl‘e) - b(k,,ﬂ)
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and, by Eqs. (2.2), the relations k-v = -(m-k) and £ = -(n-g)
must hold for a nonzero average; therefore, m =v and n = 0. Under

these conditions,

2
{Q@m,n,k,0) = = W(;k - av,af)

L'b(k,£)

which leaves only the double sum over k and £. The terms in the sum
over m anc¢ n are evaluated only at m =v and n =0 with the re-~

sult,
b(m,n) -b(v,0) = By
sinc(XR) - sine(XI)

sinc(YR) - sinc(YI)

Relabeling the summation indices k and £ as m and n, the average

of A*B can be written as

2

{(A*B) = ~ %? (y + cos 8) cos? o] sincz(XI) sincz(YI)(l + 7 cos 0)

= 2
. :1 [az(v - m)?2 B + (B - 0cav) bz(m,n)J ! w(;m-—av,an)
mn L b(m,n) (2-38)

If b(m,n) is real, then (A*B) = (AB*); if b(m,n) is imaginary, then
(A*B) = -(AB*) and the AB cross terms cancel. All of the cross terms
involving A have this property.

The average of other terms involving A are similar. The
remaining self and cross terms take on another form and can be repre-
sented by a single example. Consider BC*, omitting factors involving

more than two random variables. Under these conditions,

40
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BC* = ZS cos # [B + b(m,n) cos 8] sinc(XR) sinc(YR)[i(cam -B) P(m - v,n)]
mh

. a 21 sin g [B + b*(m?,n*) cos 61
m'’n?

. sinc(XR') sinc(YR') [-ion'P*(m' -~ v,n*)]
The random terms are
P(m - v,n) - P*(m* - v,n")

For a nonzero average, the conditions m =m' and n = n' must hold.

After averaging, the result is

(BC*) = a EE cos @ sin ¢ [B + b(:m,n) cos 6]
m

. [B + b*(m,n) cos 61 sinc® (XR) sinc(YR)

3 xzw(am - ay,an)

2
L

- [om(can - B) (2.39)

Tn this case, (BC*) = (B*C).
To obtain the radar cross section per unit area, (EGES )/L2
is evaluated in the 1limit as L tends to infinity. From (2.35),

(E EX 2
929 = ; 5 (AA* + BB* + ...)
L 4 R

2
and the term-by-term evaluation is in the form of 1lim L°(XY*).
Lo
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When evaluated in the limit, each of the three examples
considered provides results that can be interpreted physically and are
in agreement with intuition. The {AA*) terw in {2.36) can be rewrit-

ten as

2 2
2, xy _ g 2 2 sin {(B sinecosg-aa)L/z]]
lin:o L7(AA™) = liu:o 3 (y +cos 6)" cos” J L[ (Fsin @ cos 7 -~ ) L/2

. I‘[sin {(B sin @ sin ¢)L/2]]2
(B sin & sin @)L/2

2
where sinc (XI) and sincz(YI) are given in complete form.
In taking the limit, the following [Thomas, 1969, p. 587]

can be used:

, 2
lim L[ﬂ%’;g—@] = 21 5(X) (2.40)
Lox

where B®(X) is the Dirac delta function. Although this equation is not

proven here, L -sinc2 has all the properties assoclated with the more

common functions whose limiting value defines the delta function. As L

tends to infinity, the limit in (2.40) tends to zero everywhere, except

at X = 0 where it tends to infinity. The integral of L -sinc2 from

~» to o« is finite and has the value of 2x, independent of L.
Applying (2.40) to Lz(AA*) yields

1lim L2(AA*) = 1t282(7 +cos 9)2 c052 J 5(BsinO cos ¥ ~PBx) B(B sin O sin @)
Lo w

(2.41)

By the sampling property of the delta function, this limit has a nonzero

value only under the conditions that

B sin B cos ¥ - B =0
B sin @ sin § =0
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Because sin € 1is nonzero by the first condition, sin J must be zero
by the second ; hence, cos J = *1., From Fig. 12, both sin 6 and «
are positive, thereby limiting cos ¢ to +l1. The conditions for non-

zero (AA*) can be rewritten as

sin @ =
sin @ =0
cos @ =

According to Fig. 12, the above conditions specify the specular direc-
tion. This is not surprising because (AA*) comes from that portion
of the field scattered by a plane reflector.

The second example (2.38) contains a double summation
that becomes a double integral in the limit. Using the delta-function
definition of (2.40),

lim LP(A*B) = —4n27B2(1 + 72) B(E sin 0 cos ¥ - BQ) 5(B sin O sin @)
Lo o

Jj (B - p) + b (p, q)] W(g(p Sc)x,q) dpdq
’ (2.42)

where the limiting conditions
am —-p

an -q

av - pBa

were used, and

[+2] 2 (o]
Ij £2' W(am ~ av,an) dmdn —ajl-}l- w(p - Bx,q) dpdg
< L 4

as L-w. Again, the contribution to the radar cross section is in the
specular direction only, but this time it is weighted by an integral of

the surface-roughness spectrum over all wave numbers, p and q.
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There is no entirely specular constraint in the third
example, (BC*). Equation (2.39) shows that, in the limit of large L,

there will be delta functions within the integrals; therefore, analyti-

cal integration is possible, using the sampling property of the delta
function. First, formally taking the limit,

[+
.
lim LZ(BC*) = J!:t‘ cos @ sin & [B + b(p,q) cos OJIB + b*(p,q) cos C]
Lo =

X 8(P 8in 8 cos @ -~ p) B(B sin 6 sin & - q) [oglap ~ B)]
- W(p - Bx,q) dpdq

and, then integrating,

lim LZ(BC*) = oc1:2f34 sin® Jcos & (1 + cosZ 6)2 sin 8 (asinBcos ¥ - 1)
Lo w

+ W(B sin € cos @ - B, B sin 6 sin &) (2.43)

WP TR T

This example indicates that, generally, there will be scattered power

at any observation acgles 6 and ¢ (t is, a nonzero radar cross

section). For a given sat of incidence and observation angles, however,
only a particular portion of the surface-roughness spectrum contributes
to this nonspecular power. Later, it will be shown that the components
of the surface spectrum ccusing the scattering in a given direction are
those that meet the conditions for Bragg scattering.

The average radar cross sections to zero and first orders
are found by applying Eq. (2.29) to all the average terms. For specular

reflection, the result is

E&V = 4n6272 5(B sin 0 cos -~ BA) B(P sin O sin )

. (2.41)
2
g (p - ) 2 1 1 _
- 1-3 :U [——7—"""'1‘ (p.q)7][,,(p,q) + Wp,q)} W(p - (xr,q) dpdq
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and, for nonspecular scattering,

E&V = 4ﬂ64(a sin 6 - cos Q)z W(B sin 6 cos ¥ - fx, B sin @ sin %)

(2.45)

These equations represent the average radar cross section per unit area
(to first order) of a perfectly conducting slightly rough time~invari-
ant surface of infinite extent. Note that the roughness contribution to
the specular cross section goes to zero when the radio-wave propagation
constant in the z-direction b(p,q) becomes imaginary. Physically,
this phenomenon corresponds to surfaces whose roughness scale is small
compared to the incident radio wavelength; in other words, the surface

appears smooth to radio wavelengths longer than a certain value.

b. Second Order

The second-order terms are of considerable interest be-
cause they account, in part, for the sideband structure observed in ra-
dar echoes from ocean surfaces.

To determine the second-order contribution to radar cross
section, the average (Q(m,n,k,£) X Q*(m',n',k?,£')) must be evaluated
for the various products in (2.35). In terms of the random variables

P(m,n),

(Q(m,n,k,£) Q*(m',n',k",2"))

) <P(k - v,2) P(m -k, n - 3) P*(k' - v,4') P*(m' -k', n' - z')>
bk, 2) b*(k',s")

For gaussian random variables, the average can be expanded [Thomas,

1969, p. 64] as follows:

(P1P2P3P4) = (plpz)(psp4) + <p1P3><P2P4> + (P1P4)(P2P3)

-2 <P1) (Pz) (P3 ) <P4)
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where the Pi need not be independent. When expanded, the average

(QQ*) “becomes

(P(k - v,4) P(m = k, n = 2)){P(v - k',-4") P(k* - m', 2' - n"))
bk, b*', L")

. (P(k - v,8) P(k' = m', g* = n"))(P(m - k, n - 2) P(v ~ k',-¢"))
b(k,s) b*k',s")

. (PCk - v,4) P(v = k',=g")){(P(m - k, n - 2) P(k' - m', ' - n"))
bk, b*?',s")
(2.46)

where P*(m,n) = P(-m,-n) replaces the conjugate terms.

It is not difficult to see why calculation of radar cross
section is limited to second order; the number of averages increases six-
fold in going from first to second order. The averaging process becomes
mechanical after the first or second term, however, so that consideration
of a representative term in (2.35) will suffice in demonstrating the
techniques involved.

Consider, for example, the BB* term in (2.35) and omit

the first-order contributions; the result is

BR* = {2: cos & [B + b(m,n) cos 8] sinc(XR) sinc(YR)
m

. az(m - k)(v - k) B + (B - oam) bz(k,z)] Q(m,n,k,z)}

=

£

:1 cos ¢ [B + b*(m',n') cos 6] sinc(XR') sinc(YR')
m'n'

N~

: 2 [az(m' -k (v-k') B + (B-0an') bz(k',ﬂ')] Q(m',n',k',z')}
k'ﬂ/'

(2.47)
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This eightfold summation can be reduced to something less formidable by
using the condition,

(p(m,n) PCu,v)) =0

unless m = -u and n = -v, Applying this condition to the first term
in (2.46),

{(P(k - v,4) Pm - k, n - 2)M{P(v - k',~4*) P(k' = m', 2' - n'))
b(k,£) b*(k",2")

imposes the following constraints on the summation indices. For the

first average,

and, for the second average,

v-k'=m'"-~k

_z' nt' -~ z'

When combined, these conditions become

(2.482)

while k, £, k', and 4' are unconstrained indices. These conditions
provide a nonzero result for the first term of (2.46). Index constraints

for the second and third terms are

(2.48b)
k* =m-k + v
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and
k = k!
)
L=
(2.48c)
m=m'
Y ¥
n=n'
;

The average of BB* is now performed in three steps by

evaluating the three terms in (2.46) under the above conditions, respec-

tively. For convenience, these separate averages will be denoted by
(BB*)l, (BB™),, and (BB*),.
When (2.48a) is applied to BB* as defined by (2.47),

the summations over m, n, m', and n' reduce to a single term, leav-

ing a fourfold summation over k, ¢, k', and £'. The result is
2 2 2
(BB"‘)1 = cos” J (B + By cos 9)? sinc?(XI) sinc?(YI)

2
T W(ak - av,af)

) [az(v -7 B+ (B - 0aw bz(k,}l)]

2
i K, £ L b(k,£)
3 . 2 2 2 ﬂZW(ak' - ay,ag")
4 : [a (v-k D" B+ (B~-cav)b (k',ﬂ')] 5 :
1 k', 2! Lp*(k?, ")

, 2
! The limit of L (BB*)1 as L goes toc infinity ic evaluated by the same
method used for first-order limits. The result is a second-order con-

tribution to the specular-direction radar cross section,

2 4
lim L.Z(BB*)1 = E:?~ 1+ 72)2 8(B sin 6 cos ¥ ~ Pa) (B sin O sir {)
Lo

r
X ﬁﬂ [(Boc - p)z + 72b2(p.q)] L(Boc-p')2 + 72b2(p'.q')]

. ¥ - Fa,q) Wlp! - Bonal) | g dptag (2.49a)
b(p,q) b*(p’,q")
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When (2.48b) is applied,
&

T

€ e “’}2 = z cos2 Z [B+b(m,n) cos 81[R +b™*(m,n) cos 6] sincz(XR) sincz(YR)
an

2 W(ak - av,ap)
1%b(x, £)

. [az(m - k)(v - k) B + (B ~ oam) bz(k,z)] i
ki

[az(k- vi(k = m) B + (B - oam) bz(m—k+v,n- z)]

2 W(am - ak, an - aj)
- j‘t 2
( Lb*(m -k + v, n - £)

2
and taking the limit of L (BB"‘)2 as L goes to infinity results in

1im LZ(BB*)2 = JJ {cos2 # [B + blp,q) cos 61[B + b™(p,q) cos 0] 41r2
Lo w =%

. + 3(B sin 6 cos ¥ ~ p) B(B sin 6 sin g - ¢)

0

. JJ [(p-u)(ﬁoz -u) B + (Bx-p) b2(u,v)][(u-ﬁo.')(u—p) 2l

-0

+(B-ap)b2(p-u+v,q—v)]

-

W - Ba,v) W(p - u, q - V)—dudv} dpdq
16 b(u,v) b*(p ~u + v, q ~ v)

The delta functions in this expression allow analytical integration over
p and ¢q. After integration, the variables u and v are relabeled

as p and q for consistency of notation with previous results.
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2.4

1im LZ(BB"‘)2 = E—Z-B—— 1+ cos2 6) cos2 o} J] [(B sin 8 cos @ - p)
L~ o =%

+ (L~-asinb cos ?) bz(p,q)] [(B sin 6 cos ¥ -~ v){(RX - p)

+ (1 ~asin B cos ﬁ)bz(BsinG cos J—-p+pa,Rsinf sinyg -q)]

. W(p-pa,q) W(B sin 6 cos & - p, B sin 6 sin F-q)
b(p,q) b*(B sin 68 cos ¥ - p + P, BsinBsing -q)

dpdq

(2.49n)

This expression represents a second-order contribution to the nonspecular

radar cross section. In Chapter IV, it will be shown that the roughness-
spectrum arguments in (2.49b) meet the conditions for double Bragg scat-
ter; that is, an electromagnetic wave incident at an angle sin"1 (@) is
i Bragg scattered by those surface spectral components having wave numbers

p-fx in the x-direction and q in the y-direction. These scattered

fields are, in turn, Bragg scattered in the (8,7) directionby the sur-

e S

[P a— s NS

face spectral components of wave numbers B sin 6 cos J - p in the x-

direction and B sin 6 sin ¢ - q in the y-direction (Fig. 12). Expres-—
sion (2.49b) is an integral over all surface spectral components that
meet the Bragg-~scattering conditions for the specified angles of inci-

dence and observation.

When (2.48c) is applied, the third-term average of (2.46)

o in e

vecomes

L 2 2t 2 2 2 (|

A0 1im L (}3B"‘)3 = —aé— cos” @ (1 + cos 8) J] [(B sin 8 cos @ - p)(Bu-p)
L—> o =&

2
+ (1 - o sin 8 cos ¥) bz(p,q)] (2.49¢)

: - - _ ¢ A -
3 . W(p-pfa,a) W(B sin 0 cos % -p, P sin 0 sin ¢ Q) dpdq

b(p,q) b*(p,q)
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The total average of the BB* term in the limit of large L is then

lim LZ(BB*) = 1lim L2<BB*)1 + lim 1,2(1313*)2 + 1im LZ(BB*)S

Lo o Low Lo Lo

When these averaging and limiting procedures are per-
formed on the remaining terms and cross terms in (2.35) and the results
are collected, the total field average 1:111!1m (EeE;)/L2 required to cal-
culate the second-order radar cross section by (2.29) is obtained. The

final result to second order, including the zero and first-order terms
in (2.44) and (2.45), is as follows.

For specular reflection:

;W - 41:&272 5(8 s1n O cos & - fx) B6(R sin 6 sin &)

2
oo JT L-p” 2 1 1 .
:1 i) [ 7 +b(p,q) 7 oyt w(p - £a,q) dpdq

b*(p,q)
2 (p-p0 .2 (' - po) .2 w(p - po,q) W(p' - pa,g')
+ % J-ﬂ‘ BN, 52,0 P2 B Ly ('.a') y wip - po,q) Wp' - pa,q') dpdq dp'dq’
Y Y ot o
o b(p,q) b"(p',q*)

(2.50)
For nonspecular scattering:

;w.cxa‘(a-uo-eo-ya)zv(a-nomy-m,a.ua.xnm

-
Hmcﬂ‘{[(g-me ~poos §-qein N(Bx - p) ~ (@ s4n @ - cos ) bz(plq)]2
blp,q) b*(p,0)

(ﬂline-pmﬁ-qsmﬂ)(%!-p)-(anne-eouﬂ)b"(p,q)
M v(p,q)

. [(puneeosﬁ-p)[eosﬂ(ﬂl-p)-qlznﬂl - (aune'eosﬂ)bz(ﬂunecoiﬁ-p+ﬂr Bunennﬁ-q}]}
b*(Bsin B cos F - p + Ba, £ 8in & sin & - q)

«W(p - P, Q) W(B sin B cos @ ~ p, P sin O sin § ~ q) dpdq (2.51)
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The same techniques employed to determine EW can be

— 2
used to derive O by evaluating lim <E¢E }/L” for incident hori-

zontal polarization. The results are as follows.

For specular reflection:

O * “3272 B(p sin 6 cos ¥ ~ P) 5(B sin O sin @)

L)

1 1 1
{ 557[ q +b(mq)[m—,—#m]'(l"m.q)dﬂﬂ

1 2 2 [!I q 4‘, (r,9) [ [ +b2(p',q')] _L_m_.'_(.f_ﬂd_.qu d,'dqt}

b(p.q) b*(p',a%)

(2.52)

For nonspecular scattering:

O ™ 4xb‘72 cos 8 cos’ P W(B sin 6 cos ¥ ~ fa, P sin O sin @)

L.J
+n8‘72 co.z 911{[31&9! (Bsin O cos f~p) g~qcon ff (Bsin 8 sin & - q) ¢eoﬂb2(p,L)]2
b(p,q) b.(PvQ)

un?’(ﬁnnOconL—n)q-qmﬂ(ﬂnh@-ing q) +cos gb EIS
3

b(p,q

. [nng_(g-@(gnneung-g) ~qcosf (Bein@sinf ~q) +oo-¢bz(Bqueol¢-p +Q,Jﬂu9-u¢-q)]}

b*(Bsin G ocos F-p + 80, Bein 6 8in § ~ q)

+W(p ~ £, q) Y(Bein @ cos F - p, B sin 6 - q) dpdq (2o53)

The above four expressions represent per unit area radar cross sections
to second order averaged over the range of random slightly rough surfaces
defined by Eq. (2.1). They are valid for arbitrary angles of incidence
and observation but are restricted to static infinitely conducting sur-

faces; furthermore, they represent only the expected value of the radar
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cross section and would not necessarily correspond to the cross section

measured for a particular sample surface.

D. Radar Cross Sections for Time-Varying Surfaces

A characteristic of radar echoes from ocean surfaces is the doppler
shift imparted to the incident radio wave by the motion of the ocean
waves. The scattering theory developed above for static random surfaces
is inadequate for predicting this feature and must be expanded to include

time-varying rough iv»faces.

1. Time-Varying Surfaces and Scattered Fields

A natural extension to Rice's theory provides a model for ran-
dom time-varying surfaces. The surface is again a Fourier expansion with
random coefficients, but the expansion is now in time as well as inspace.

With the time factor included, the surface determined by (2.1) becomes
£(x,y,t) = jéi P(m,n,I) expl-ia(mx + ny) - iwIt]
mn

where T = 21/w is the time period of the Fourier expansion and corre-
sponds to the spatial period L. The field expansions corresponding to

those in Section A are in the form of

E = :Z& AT E(m,n,z,I)
mn

E(m,n,z,I) = expl-ia(mx + ny) - ib(m,n) z - iwlIt]

vhere

The statistics of the time-varying surface Fouriex coefficients

are

(P(m,n,I)) =0 (2.54a)
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(P(m,n,1) P,v,N)) = (u,v,J) # (-m,-n,-I) (2.54b)

3
{(p(m,n,1) P(-m,-n,-I)) = ?-g— w(p,q,wI)
LT (2.540)

(P(m,n,I) P*(m,n,1))

vhere tihe¢ factor of 2 in (2.54c) is retained from the Fourier transform
over the time domain (see Section A.1). Although this does not follow
Rice's convention, it allows the Fourier transformation of the autocor-
relation functions, following the normal convention.

The procedure for matching boundary conditions and solving for
the coefficlents of the field expansions in terms of the surface coeffi-
cients is exactly the same as that for static surfaces. The resulting
field expressions are those previously oﬁtained, (2.12) and (2.13), ex-
cept that P(m,n,I) replaces P(m,n), Q(m,n,I,k,%,J) replaces Q(m,n,
k,£), and E(m,n,z,I) replaces E(m,n,z).

When the Stratton-Chu integral (2.27) is applied to the time-
varying version of the scattered field for vertically polarized incidence
(2.13), the O-component of the field scattered by a finite surface be~-

comes
(-ifR) 2 i t
Ey = ‘_?le_ﬁnf_"_ {—a cos @ cos O sinc(XI) sinc(YI) e ©°

\W
A

“L(wl-w )t ikIR
+ ZI cos § [B +b(m,n) cos 8] sinc(XR) sinc(¥R) [Ex terms] e ° e
mn ————EEEIREIREEE A ——

B
V -1(wI-u°)t lkIR
+a ) sin & [B +b(m,n) cos 6] sinc(XR) sinc(YR) [E_terms] e e
mnl eI y - aaal
(o}

+ Z - cos @ (am cos # +an 32 ) 220€ ();R(zns;r)\c(m)
mn ’

B e CURRRRREEA e Py SR ————
D

-1(WI-(0°)1: 1kIB
[Ez termsle e

(2.55)




where kI = IwANpe and ub is the incident radian frequency. Implicit
here is the assumption of a slowly varying surface, as can be seen by

considering the exponential term,

iw t
E(m,n,z,I) e ° = exp[}ia(mx +ny) - ib(m,n) z - i(wl - ub) t]

To be exact, the factors b(m,n) and B should also be functions of 1I
because the electromagnetic propagation constant B = w/c is really

B = (ug-—Iw)/c, where c¢ = 1/JHE is the velocity of electromagnetic-
wave propagation. Radar observations of ocean surfaces, however, indi-
cate doppler shifts on the order of hertz for incident frequencies in
the megahertz region. As a result, (Qo-Iw) = wo is allowed in the
amplitude factors while the exact formulation for the phase terms (the
exponential terms} is retained. Fortunately, because the surface of
integration is taken in the z =0 plane, the factor b(m,n,I) never

appears as a phase term.

2. o(w) Defined

Before proceeding further, the derivation of a useful expres-
sion from (2.55) for radar cross section must be considered. Because
the effects of surface motion appear as doppler shifts in the frequency
of the radar received power, it is convenient to express the per unit
area radar cross section as a distribution over frequency {(a per unit
area radar cross section per unit frequency). The time-averaged scat-
tered power per unit area is replaced, therefore, by a power spectral
density per unit area ¢(w) in expressions for incremental radar cross

section. Hence,

2
w
o(w) = 4B W (2.56)
IE, |
where % is radio-wave radian frequency.
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For a given function of time E(t), the power spectral den-
sity o(w) is the Fourier transform of the time autocorrel-iion func-
tion @(t) [Thomas, 1969, Ch. 3], where

x 2 v
R R ) ?wwmgm‘ A

R 2

‘3 KD = lin = f ECt) E*(t + T) dt
To o )

At 7 =0, R(1) = RO0) = |E(t)|?2 where the bar indicates the time av-
8 erage.
By definition,

i o(w) = IR(T)] = -2]'—“ J R(7) e—iw'r dt

=00

As a check on consistency of definitions, consider the per unit area

o
radar cross section? o , where
o 00
[0 =J o(w) dw
]

From (2.5 ) and the definition of ¢(w),

3

when the order of integration is interchanged, the integral over w de-

¢ fines the Dirac delta function given in Section A.1. Therefore,

*oo denotes the per unit area radar cross section of a time-varying

surface while o designates static surfaces. Both are defined in
terms of time-average scattered power; however, the power scattered
from a static surface is monochromatic; the power scattered from a
time-varying surface is not.

o

s ¥
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P e

2 e —
‘g © = 4nR ) J R(t) 8(T) dT = axR? -,-:E-(i)-%-—
; [E, |7 7= IE, |

2
where lE(t), represents the per unit area time-avcrage power in the
i scattered field. This expression for oo is consistent with those for
g, the static-~surface incremental radar cross section, defined in Sec-

tion C.1; however, time dependence is stated explicitly because the

scattered fields are no longer simple time-harmonic functions.

Equation (2.55), from which ¢(w) must be obtained, repre-

sents a stochastic process. If the time averages of all orders are
equal to the corresponding statistical averages, the process is called
ergodic. In particular, if the process is ergodic,

R(1) = R(1)

where R(71) 1is the statistical autocorrelation function from which
?(w) can be calculated. For Eq. (2.55), R(1) = R(tl-tz) = <E6(t1)
. E;(tz))/Lz.

Although ergodicity is generally impossible to prove for a
given process, there are times when it can be reasonably assumed from
E { the physical mechanism generating the process. For a homogeneous ocean
surface where the wind has been blowing steadily for a long time and the
wave-height statistics are independent of time, ergodicity is often as-
3 sumed for the random process describing surface height. The process
' | represented by (2.55) is taken to be ergodic by the argument that the

scattered-field statistics are generated by the scattering surface.
Assuming ergodicity, the radar cross-section expression (2.56)

becomes
A
2[(E, (t,) EX(t,))]
: ; o(w) = 4nR> 6 1 5 6 2 (2.57)
= L
2 * 2
where lEi, =1 as before, and (Ee(tl) Eo(tz))/L = R(t, - t,).

Mome ave

.
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- 3. Calculation of g, . (w)

I Ww—

f The derivation of va(w), the radar cross section per unit
. E area per unit frequency, follows that of E&V in Section C.4. The av-
‘ 2
1 erage (Ee(tl) E;(tz))/L is found, the limit is taken as L and T go
; S 1 to infinity, and a Fourier transform places the result in the frequency
‘ domain.

For time-varying surfaces and using the abbreviated notation
‘ in (2.55), Eq. (2.35) becomes
1 &
L4
* - * * *
3 Ey(t,) Eg(t,) = w22 {A(tl) AT(ty) + B(t,) B¥(t,) + C(t)) C™(t,)
3
& +D(t,) D*(t,) + |ACt)) B*(t,) + B(t)) A*(t )| + ...
1 1 2 1 2 1 2
1 (2.58)
3
1 i The averages of the various terms are calculated to zero, first and sec-
1 ond order as before.
i a. Zero and First Order

3
E The Ar* term contains no random variables (zero order)
g and is
s . 2 iw (t -t )
3 .
4 (A(tl) A*(tz)) = %r (y + cos 6)2 cos? o] sincz(XI) sincz(YI) e © 12

4 2 *
S Taking the limit of L (A(tl) A (tz)) as L goes to infinity produces
F

{ 2 2 2 2 2

. 1im L (A(tl) A*(tz)) = 4% %r (v + cos 8)" cos” ¢ &(B sin 8 cos & - AY)
4 : L o
3 £
4 . 1

i T
o]

+ 85(B sin 0 sin @) e

(2.59)
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wvhere T = tl—tz and, from Eq. (2.40),

lim L s:lnc2 -’%
Lo w

= 2¢5(x)

The Fourier transform,

o =i (w-w )T
2.1 =§%f [1e LA
-0y

provides the power si;ectral density from the autocorrelation function
(2 . 59) 1]

Z[RAA] = 41:25272 8(B sin 6 cos @ - Pa) B(P sin B sin @)

1 0 -1(w—wo)'r
* 3x f e dT (2.60)
00
vhere
R,, = lim LZ(A(t1) A*(tz))
Lo N
0052 g=1
c052 @ = 72

from the delta functions. The integral

—1- - -1(w-wo)'r g
an e T
00

is the Fourier transform of a constant (unity in this case) and is
6(w-mo) from the previous definition of the Dirac delta function. The
AA contribution to the power spectral density per unit scattecing area
is then
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¢M(m) = Z[RAA] = 41t28272 5(B sin 6 cos 7 -~ Bct) 5(Bsinfsing) d(w - wo)

(2.61)

and represents power scattered in the specular direction at the incident
radian frequency wo.

The addition of tine variation to the slightly rough sur-
face does not affect the zero-order scattered power (power reflected from
a planar surface) except to specify its frequency. The total average re-
flected power is the same for both time-varying and static surfaces; for
the tiue-varving surface, it is [except for the muitipiicative factor of

a®r®)™h

I_w <I>AA(w) dw

or, equivalently,

RAA(T) |'1.'1-0

Performing the indicated integration eliminates S(m-mo) from (2.61)
which then becomes identical to the average power term (2.41) for the
static surface.

First-order terms contributing to power scattered in the
specular direction are derived from the cross terms involving A in

(2.58). As an example, consider the cross term

iwotl

w

At) B*(tz) = ~% (y + cos ) cos @ sinc(XI) sinc(YI) e

2

, z cos @ [B + b*(m,n) cos 81 sinc(XR) sinc(YR)
I

1(wI—w°)t2 e-ikIR

o

. 2_ [az(m-k)(v-k)ﬁ + (B ~oam) b2(k,£)] Q*(m,n,1,k,£,J)
k2d
(2.62)
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where only those parts that produce first-order terms (product of two

random variables) have been included. The average of (2.62) is nonzero

only if
(Q*(m,n,1,k,£,3)) £ 0

where

t 3 - * _ _ -
Q*(m,n,1,k,4,7) = 2k - v,8,0) P*m -k, n -4, I ~J)
p*(k, £)

Under the restrictions on m,n,I, the first summation reduces to a sin-~
gle term where, again,
b(m,n) -b(v,0) = gy
sinc(XR) - sinec(XI)

sinc(YR) —sinc(YI)

The average becomes

(AB*) = - g (y + cos 8) cos® d sincz(XI) sincz(YI)(B + By cos 6)

iw (t,~t,)
Le O 172 22 [Az(v - k)2 B+ (B~ oav) b2(k,z)]
k4J

. 2n3 W(ak - av,af,wJ)

2T vk,

When the limit of Lz(AB*) is taken as L and T go to infinity,

ak -»p
af -q

wl —
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and the summations become integrals over k, £, and J. The variables

of integration are then -Langed to p, q, and & with the result that

lim (AB*) -41{2637 (1 + 72) (B sin 8 cos ¥ - o) B(R sin O sin @)

L,Tvw

i

iw T
ve jj}.[kaa - p° 72b2(P.q)] ¥p - B9, ypyq40
- 4b*(p,q)

I
L
il
=

The Fourier transform of R yvields another delta func-

AB
1R tion in frequency,
¢‘A£(w) = Z[RAB] = -1t2f337(1 +7z) 8(Bsin 6 cos ¥ - pa) 5(Rsin g sin ¥) B(w - wo)
: : jﬁ [B-»? + 7207 p,0)] FLZERLD 4099
i =5 b*(p,q)

(2.63)

Again power is scattered in the specular direction but, surprisingly,

Yerr AT Y
A < s

only at the incident wove frequency although this power depends on a
rough, rather than vlz.ar, time-varying surface.
i The remainder of the cross terms in (2.58) involving

A(t) are similar to (2.63) and, when combined as

2f 1
{ cvv(w) = 47R ( > 2> [QAA(w) + ¢AB(w) + oBA(w) + ®Ac(w) + ...]

41 R

S kasds FEa g
s < popeins e A

determine the specular radar cross section per unit area per unit fre-

quency to first order,
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ow(w) = 41th72 5(B sin 6 cos ¥ - pa) B(B sin 6 sin 7)) d(w - wo)

7 2
{1 - -"2— J]f [-(-1’—-—'5-75'92— + 7b2(p,q)]

1 1
. [b(p,q) ¥ b*(p,q)] Wp - po,q,) dpdqd“} (2.64)

The nonspecular radar cross section to fivst order in-

volves the terms in (2.58) that do not contain A(t). TFor example,

B(tl’ C*(tz) = z cos ¢ [B + b(m,n) cos 6] sinc(XR) sinc (YR)
mn I

‘i(wI-uB)tl ikIR
. i(cam - B) P(m - v,n,I) e e

. z -sin ¢ [B + b*(m',n") cos 6] sinc(XR') sinc(YR')
m'n'I?

1(#1'-0 It, -1k R
. ican'P*(m' - v,n',1') e e (2.65)

where only the first-order ..rms are retained.
From condition (2.54c), a nonzero average requires

m=m‘',n=n', and I = 1', thereby reducing the average of (2.65) to

(BC*) = sin @ cos @ [B +b(m,n) cos 6] [g +b*(m,n) cos @] sinc2 (XR) sincz(YR)
mnl

. ¢ foam - B) exp{-i(wl - wo)(t1 - tz)]

0.3
. f—% w(am - avy,an,wl)
TL
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Taking the limit of large L and T and changing the variables of in-

tegration as in the previous example gives
o0
2 13
1im L°(BC*) = 4x? ﬂ]- cos J sin g [B +b(p,q) cos 61[B +b*(p,q) cos 6]
L,Tow -0
- 8(B sin 6 cos ¥ - p) B(B sin 9 sin ¢ - q)

-1(0-0 )1
- aalop - B) e o ¥p - Ea,q,ﬂ) dpdad®

The delta functions are used to integratce analytically over p and gq,

1im L2(BC*) 1T2 cos Fsind 54(1 +cos2 6)2 [asin @ sin F(asin6 sin @ - 1)}

L,T>w

00 -i(Q-wo)T
. f W(BsinOcos @ -po, Psinbsind,Q) e an

RBC

In Fourier transforming the above, the order of integration is exchanged.

For the integral alone,

00 1 3 -1 (G- $w)T ]
I dQ[z—n; f W(R sin O cos & - B, B sin O sin &,0) e ° d'rJ

=00

f a(Q - W, + W) W(B sin 6 cos ¥ - B, B sin O sin 7,Q) ¢

00

W(R sin O cos ¥ - P, 3 sin @ sin ¢, W - )

The spectral deusity for the BC* term is then
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dec(w) = 1:2 cos @ sin ¢ 64(1 +<:os2 9)2[a 8in 6 sin & (@sinf sin & - 1)]

« W(B 8in 6 cos ¥ - B0, B sin 6 sin ¢, w - W

Again, the remainder of the first-order products in (2.58)
have similar spectral densities and combine to determine the first-order

nonspecular radar cross section per unit area per unit frequency,

crw(w) = 4:!54((1 sin @ - cos ,®')2 W(B sin 6 cos ¥ - fa, ‘B"s"inesinﬂ, wo-w)

(2.66)

Unlike the specular cross section, the 2onspecular cross section provides
for returned powers at other than the incident~wave frequency. Because
specular power contains a single frequency, specular scattering in this
case 1is also coherent scattering; the nonspecular power containing a

spread of frequencies is referred to as incoherent scattered power.

b. Second Order

Second-order terms for time-varying surfaces are derived
in the same manner as those for static surfaces except that the statis-
tical averages must be Fourier transformed. 1lecall that the second-or-
der terms are those containing the product of four random varisbles in
the form of Q(m,n,I,k,£,J) Q*(m*,n?,I',k*,2',J'). The average of QQ*
is expanded into three terms as before,

(Q(m,n,1,k,2,J) @*(mf 27,1 k*,2',3))

APk -v,2,5) P(m-k, n-4, I1-DMP(v-k', =£-J3') P(k* =m*, £' -n?, J?'-I*))
bk, 2) b* (k2"

. {(Pk ~v,2,J) P(k* -m", £ -n', J*' -I"))(P(a-k, n-g, I-J) P(v-Kk',-2',-3"))
b(k,2) b*(k',s*)

. (Plc~v,2,J) Pv=k', =4' -J")){P(u-%, n-£, 1-J) P(k' «m*, £' ~n', J* ~1"))
b(k,2 b*(k',2")

(2.67)
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For nonzero averages in the first term, the index constraints are

m' =m=v

n*=n=20 (2.68a)

i
()

I' =1

and are analogous to those of (2.48a) for the static surface. The con~

ditions for nonzero averages for the second and third terms are

m = m' k' =m -k +v
n=n' ' =n - § (2.68b)
I=1 Jt=1-J

and
m = m' k = k'
n =nt L= (2.68c)
I=1 J=4J!

A typical term in (2.58) is evaluate! t: illustrate the
technique used tc find the second-order time-varying radar cross sec-
tion. All second-order terms are similar, and their cverages are com=-
puted bv means of the three-~term expansion (2.67). As in the static-

surface second-order example, the typical term is

— -i(wl--wo)t1
B(tl) B*(tz) = 2'1 cos @ [B+b(m,n) cos 8] sinc(XR) sincfYR) e
mn

1k, R 2 2
‘e [a (m-kK)(v=-k)B+(B-0am) b (k,ﬁ)]
kiJ

* Q(m,n,l,k,M) (2-69)
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m';il'

1wI'-w )t, -ik R

¢ e

2

k' z'

e

cos ¥ [B +b*(m",n') cos 9] sinc(XR') sinc(YR')

[az(m' ~ k(v - k') B + (B - cam') bz(k',z')]
J'

. Q*(m' ,nt,I% k', 20,3

(2.69)
Cont.

The three averages corresponding to the three terms in (2.67) are de-

noted as <BB*)1' (BB*)Z, and (BB*)3 and are evaluated by using tbe

conditions stated in

(2.68).

Applying condition (2.68a) to the average in (2.69) yields

(BB*)1 = cos2 Z 62(1 + 7 cos 9)2 sincz(XI) sincz(YI) e

szkl‘.eiJ'

. [az(v - k')2 B+ (B - oav) bz(k',z')]

. W(ak - av,ag,wJ) W(ak' - av,ag',wd*)

iw T
o]

[Fz(v - k)2 B+ (B~-av) bz(k,z)]

2

3
25
b(k,£) b k',z") <;L2>

The limit of L.2(BB*)1 as T and L go to iafinity is taken as be-

fore. Fourier transformation provides a delta function in frequency

because of the e

1wy

term, and the result
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B4(1 + ')'2)2 5(B sin 6 cos ¥ ~ Bx) B5(R sin 6 sin &) S(w-wo)

) ﬂﬂﬂ [(ea -7 4 72b2(p,q)][(ﬂa - 0% 4 72b2(p"q')]

. w(p - pa,q,) W(p' - fa,q',Q') dpdqd? dp'dq'dQ’ (2.70a)
b(p,q) b*(p,q)

%y (V) =

is a second-order contribution to the specular radar cross section.

Applying condition (2.68k) to (2.69) and averaging provides
(BB"‘)2 = Z coszﬂ (B + b(m,n) cos 61[" + b*(m,n) cos 6]
mnil
-1 (wi-w )T
[0}

. sincz(XR) sincz(YR) e

. }_‘ [az(m -k)(v - k) B+ (B ~ cmm) bz(k,Z)]
k2J

. [az(k - vk -m) B + (B-omm) b2(m -k +v,n - Z)]

2
. W(ak - av,ag,wl) W(am - ak, an - af, wI - wJ) <2n:3>
2

b(k,2) b*(m - k + v, n - 2) TL

In the 1limit of large L and T, a sixfold integral is encountered;
however, the sinc functions become delta functions and two of the inte~

grations can be performed by inspection,

2 o0
2 2
lim LZ(BB"‘)2 =X cos® ) 54(1 + cos @A) f e

L,T-—)OO -0

1 (Q'-w )T
(o]
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00
P . {II [(B sin 8 cos # - p)(Bx ~ p) + (1 - @ sin 6 cos N bz(p,q)]

. [(p-ﬁa)(p—ﬁsinecosﬁ)+(1-as1n9cos;25)

. bz(B sin 6 cos # - p + B, B sin O sin & - q)]
. . W(p-{i’x,qiﬂ) W(Bsinbcos P ~p, Bsind sing-q, Q* -Q) dpdqu} aqr
b(p,q) b™(sin 6 cos ¥ - p + By, B sin 6 sin g-q)
1. Fourier transformation yields the delta funct<on 8(9'-wo-+w) which
i allows analytical integration over Q'., The re ult is
i
;.
; ﬂz 2 4 2 .2
ié i d)BBz(w) =7 cos FPB(1 4+ cos” )
3 o
. J]f [(B sin 6 cos P~-p)(Br-p) + (1 -xsinb cos )] bz(p,q)]
=00
. [(p- Pa)(p - Bsin 6 cos @) + (1 - o sin 6 cos 3}
2
*b (Bsin 6 cos J - p +pa, B sin O sin g - q)]
|
W(p - Ba,q,0) W(RsinO cos & - 3sinfsing-q, wo-m-ﬂ)
b(p,a) »*(3 sin 6 cos J - p + B, B sin 6 sin @ - q)
- dpdqdQ (2.70b) ~,
g c To find the third-term average (2.68¢c), the procedure is :

the same as for the second-term averagc. After averaging, limiting, and

transforming,




ke ”'M'umw-« EPI

A B Wy n

shan

2

s 2 4 2 2
¢BB3(w) = = cos gp (1 + cos” 8)

°° 2
. J‘J‘J‘ [(B sin 6 cos @ -p)(Rr~-p) + (1 -sinb cos @) bz(p,q)]

W(p - fx,q,) W(RsinBcos@P-p, BsinBsinf-~q, wo-w-n)

v{p,q) b*(p,q)

« dpdqd{l (2.70¢)

As in the static-surface case, (BB*)1 contributes to
the specular cross section, and (BB*)2 and (BB*)3 contribute to the
nonspecular cross section.

When all terms in (2,.58) have been evaluated to second
order in the manner described for B(tl) B*(tz), they are combined and
used in (2.57) to arrive at the second-order radar crcss section per
unit area per unit frequency. The radar cross sections to second order

(including zero- and first-order terms) are as follows.

Cocherent:

ow(w) - 41(8272 (B #in 8 cos & - Fo) 5(B sin O sin &) S, - )

2 .
. {1 - g Iﬁf [SP—;;E-”— + 7b2(p,q)][ﬂ;7y + L ] w(p - 82,q,0) dpdedQ

v%(p,q)
2 ® - 82 2 ' - an? 2
B Iﬂﬂ’ -P-—;B—a— + 9% (p,q) -L—-EL)-7 + 90 (' ,q")
. ¥(p - fa,q,0) Wp' - pa.q',0) dpdqd dp'dq'en’ (2 .71)
b(p,q) b*(p',q")
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Incoherent:

cw(w) - 41(54((1 sin 6 - cos ﬁ)z ¥(B'ain O cos ¥ -~ Bx, B sin O sin ¢, w, = w)

: O + ngt fﬂ{{(e s$in 9 - p cos & - q sir M (Bx ~ p) - (a 8in O - cos @) bo(p,q))°
v b(p,q) b*(p,q)

. [(b 8in 6 - p cos ¥ - q sin @) (A -~ p) - {x 8in 6 - cos P) bz(P:Q)]
b{p,q)

. . [ggssnecosﬂ-p)[cosﬁ(aa-p)-qsmﬂi] - (auue-oosﬂ)bz(ﬂunacosﬂ-pq»pa, Bthalgﬂ-q)]}
b*(B s4n B cos F - p + B, P #1n O sin F ~ q) :

*Wp -, q, D) WP sinOcos g -p, pein 6 ein §-q, w - w - 0) dpdedf (2.72)

-

v menesem b e

The derivation of OHH(w) is similar to that for Uw(w),

P

and the results are as follows.

pare

Coherent:

{
1 (@ = 4%8%y° (R s1n 6 cos # - f) (B stn 6 #in 2) 8w, - W
{
{ oy ﬁj‘ 2 .32 1 1 _
{l 2 ) [q +b (p,q)][m +m] w(p - Ax,q,R) dpdqdf
2 2
+ Q-‘J—- j]ﬁ]]‘ [qz + b"(p’q)][qu + bz(p',q')] wp - px,q,2) W(p* - f.q',0) dpdqd? dp'dq‘dﬂ'}
= b(p,) b*(p*,q")
(
(2.73)
3
o
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Incoherent:

om(w) - 41!6‘72 c:cnz 2] {conz g WP iin @ cos @ ~ Px, P sin 6 sin J, w, = w)

0
‘_%w{hsmﬂ(ﬁlmewlﬂ-p)-qeolﬂ(auineggﬁ—q)+co|¢bz(mq)lz
b(p,q) b*(p,q)

’chinﬂ(ﬁsmﬂmﬂ-p)-qco-ﬂ(ﬁuneunﬁ-q)+co-,6b2(p,q)
L 5(p,q)

. [uinﬂ(g:g:)(aunennﬂ-q) - qgcosy (Peindsing -q) +eo-¢bz(ﬂluecol¢-p +Por, Blmelhg-g)]}
b*(Bstn G ers P -p + P, Botn 6 sin ¥ - q)

~Wp-pa, q, M WPHatn 6008 ¢ ~p, fatn O sin I - q, W - wen) upaqm} (2.74)

Expressions (2.71) through (2.74) for the second-order
bistatic-radar cross sections per unit area per unit frequency for a
slightly rough time-varying surface are the major results obtained in
this chapter. They represent radar cross sections in terms of the sur-
face-height directional spectrum and will be used in Chapters IV and V

to analyze ocean surfaces.

E. Effects of Finitely Conducting Surfaces

For smooth surfaces, the difference between fields reflected by a
pevfect conductor and those reflected by a good conductor are small,
except at vertically polarized grazing incidence; Jordan (1950, pp.621-
623) provides examples of these differences in the form of dipole far-
field radiation patterns. Vertically polarized waves propagating along
a finite conductor are continuously attenuated by ohmic losses until, at
large distances from the source, they are no longer detectable. No such
attenuation occurs along perfect conductors. On the other hand, tangen-
tial btoundary cenditions cause horizontally polarized fields to vanish
at grazing imcidelnce for both perfectly and finitely conducting surfaces.

Por the slightly rougl surfaces considered here, the assumption of
perfect conductivity causes a singularity in the expressions for the
scattered ficld. As might be expected, this sinpularity is associated

with radio waves propagating along the surface; however, both UVV wnd

72



2

VTR

GHH exhibit singularities because of depolarization caused by surface
roughness.,

when b(p,q) =0, (2.71) through (2.74) become singular, surpris-
ingly, at all angles of incidence and observation. By the definition in
(2.5), b(p,q) represents the z-component of the radio-wave propagation
constant for a wave in which p and q denote the x- and y-components
of propagation, respectively; therefore, when b(p,q) = 0, propagation
occurs entirely along the x,y-plane or mean scattering surface. For fi-
nitely conducting surfaces, however, there is always a component of prop-
agation directed into the surface to provide for ohmic losses (Fig. 14)
and, as a result, the z-component of provagation cannot be represented
entirely by b(p,q). In Chapter IV, the radio wave defined by p,q, and
b(p,q) is idemtified as the intermediate scattered wave associated with
double Bragg scattering; consequently, it can assume grazing propagation
independent of the incidence and observation angles.

Including the effects of finite conductivity in (2.71) through
(2.74) not only allows evaluation of Tyv and CHH, but also provides
a more realistic scattering model. For good conductors such as sea water

and only slightly rough scattering surfaces, the effects of finite

H11€110¢

Fig. 14. PROPAGATION .“!/)NG A FINITE CONDUCTOR. Ver-
tically polarized waves propagating along a surface
of finite conductivity are tilted slightly toward
the surface, thereby providing a component of prop-
agation into the surface. Power (low into the sur-
face accounts for ohmic losses arising from field-
induced currents flowing in the f'nite conductor.
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conductivity are most apparent at vertically polarized grazing propaga-
tion. Under these conditions, deviation from perfect-conductor theory
is explained by the small component of wave propagation directed into
the surface. The equations for OVV and UHH are modified by replac-
ing b(p,q) with

b(p,q) + BB,

where SBZ represents the z-component of the propagation constant for
grazing conditions [b(p,q) = 0]. The substitution is justified only
if Sﬁé is small compared to b(p,q), except near grazing propagation.
The procedure used here to determine SBZ follows that of Jordan
(1965, pp. 204-207). A vertically polarized plane wave propagating
along the interface between air and a finitely conductiang smooth surface
is assumed (Fig. 14). There are no variations in the y-direction; vari-
ations in the x-direction are designated by e 70* in the air and by
e-71x in the conductor. Variations in the z-direction are to be deter-
mined.
The following are Maxwell's equations in source-free time-harmonic

form. .

In air:

+
~
=
i

X
oz oz iw“bHy

-y H = iwe E_

oy
OH
- SL = weE (2.75a)
Within the conductor:
anx
Sz * 71Ez = —iw”‘lny
- 7Hy = (cc + iwel) Ez
H ]
-5 = (crc + iwe ) E_ (2.75b)
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where ¢ and p represent the permittivity and permeability of the

media. Subscripts o and 1 refer to the air and conductor regions,

respectively. Conductivity in region 1 is G Corbining these ex-
pressions produces the following results.

In air:
azn 2 2
—-—lz=-()' +wpe)H (2.768)
dz (o] 00 y
s’
h2
o
within the conductor:
3% 2
—-——-zazz = [i'.opl(o‘c + 1we1) - 71] Hy (2.76b)
W
2
hy

The solutions to these are as follows.

In air:
h =z «h z
[$) o
Hy = c,e + c2e
Within the conductor:
h.z =h_z
1 1
Hy = cae + c4e

Taking the positive square root for h2 requires ¢4 and c4 to be

zero for finite fields to exist at z = in air and at z = -» in

the conductor. )
Including the x-variation in the expressions Ifor Hy yields the

following results.
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Within the conductor:

These expressions must be equal at the interface z = 0 tomaintain the
continuity of Hy; therefore, ¢, = Cg and 7o = 71.
From Maxwell's equations and the expressions for Hy,

In air:
: = hoc2 e-hoz -7Ox
x  iwe e
o
In the conductor:
£ = -hlc2 ehlz e-yox
x O + iwe
c 1

Again, for continuity of fields, the two expressions for Ex must be
equal at the interface; therefore,

2 ""zeihi
h =

= (188 )°
(oc + iwel)

nr%amwrMWcmmawnycchOMWm and permittivity

€, ~0.72 X 10~2 ¥/,

Uc > ) 1

at the radio frequencies of interest (less than 30 MHz); then,
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ho = iBBz =~ ip(1 + 1) -2-8';'

vhere B =W “beo is the radio-wave propagation constant in air, and

n

X e By is assumed.

Using the expression

zs = (1 + 1) ’%%:

[Ramo and Whinnery, 1953, p. 239] for tué conductor surface impedance

iR B b i

results in the simple form,

z
88, = B -T? = gA (2.77)

« where 10 = ,’p.o/eo is the characteristic impedance of free sp.ce, and
A represents the normalized surface impedance of the conductor. At 30
MHz, the normalized impedance for a smooth ocean surface is A = 0.0144

t (1 +i). For a smooth perfectly conducting surface, the z-component of

i the propagation constant can be written as
b(r,.) = B cos €

¢ The angle 6 at which B cos 6 = |5Bz| ie 88.8°; consequently, 8B,
is small compared to b(p,q), except near grazing propagation (6 =
90°). Barrick (1971) has calculated the increase in ocean-surface im-
pedance caused by roughness and indicates that the total normalized

O surface impedance is still small compared to b(p,q). Although the

modifications to (2.71) through (2.74) are slight in this case, they

are sufficient to allow evaluation of UVV and GHH'
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Chapter II1

HYDRODYNAMIC THEORY

A theory was developed in Chapter II for electromagnetic wave scat-
tering from a slightly rough surface, resulting in expressions relzsting
incremental radar cross section per unit frequency to the scattering
surface-ﬁeight spectrum. In this chapter, the ocean surface is examined
t0 determine the salient features of its surface~ or wave~height spec~
trum.

In Section A, the equations of motion and boundary conditions re-
quired to describe the ocean surface are developed and found to be non-
linear. Because of the boundary-condition nonlinearities, perturbation
techniques are employed to solve the equations of motion, again only to
second order. The result is a surface-height spectrum composed of first-
and second-order terms. The first-order spectrum is the superposition
of sinusoidal waves, each of which obeys a wave equation and 2 first-or-
der dispersion relationship. The second-order spectrum is a result of
the nonlinear interactions of the waves in the first-order spectrum.

In Section B, Tick's perturbation method [Kinsman, 1965, p. 588]
is expanded to three dimensions, and a second-order wave-~height spectrum
is derived in terms of a general first-order spectrum. Section C pre-
sents some of the first-order wave-height directional spectra that have
been postulated for ocean surfaces. A model for ocean swell is proposed

in Section D.

A. Equations of Motion and Boundary Conditions

The development of the equations of motion and boundary conditions
presented here follows that of Kinsman (1965, Ch. 2).

1. Equation of Motion, Continuity Equation, and Velocity
Potential

The development of the equation of motion begins with Newton's

second law of motion,
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du -~ 5
a.{;. = fp 4 fg (3.1)

where u 1is the velocity and 'fp and fg are pressure and gravity
forces per unit mass (Fig. 15). Other forces associated with fluids
(such as friction, surface tension, and Coriolis) are neglected because

they have little effect on the 2 to 400 m ocean wavelengths of interest
here [Kinsman, p. 23].

9

UNIT MASS

TRAJECTORY

9
GRAVITY
FORCE

p PRESSURE FORCE

Fig. 15. FORCES ON A UNIT MASS.

The total time derivative of a component of u is written as

du. w. x_ N

_x_ . x, xdx _xdy _ xdz

at "t Tt x att gy at tX: ot
or

dux du o ou ou

X X X X
3'3—1; +ux-3-—x +uyTy +uz-&-

The time derivatives of the y- and z-components are similar and, when
these three components are combined, the total derivative can be written

in vector form as

du w1
e _d_t..,._.v(u cu) +(Vxu) xu
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vhere V 18 the gradient operator and VX is the curl operator.
The uwressire force in (3.1) i obtained by considering a small
volume of fluid 5x, dy, bz with pressur’e p at its center (Fig. 16).

SRR R PR s
65 00 i A oo Rt

§ )

/Pnsssuas p AT CENTER

Y
“‘; p+E e o

C Fig. 16. PRESSURE ON A SMALL VOLUME OF FLUID.

The force in the x-direction is the difference between the force at the

C face with x-coordinate -% 5x and at the face with the coordinate % dx
with respect to the center of the volume. The pressure at the first face
is

10p
- P-3 5% ox

and, at the second face, is

1
. p+§§8x

The force is pressure times the area of the face; therefore, the total
force in the x-direction 1s

G
1 1 op %
(p -3 % Bx) dydz - (p + 5 5 Bx) Dydz = - Sxdybz
. Force per unit mass is simply force divided by tne total mass pdxbybdz,
=-1d
f1:>x T poux
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wvhere p 1is the fluid density. The total force per unit mass is then

- 1
f =« =V
p p P

If the z-axis is aligned with gravity, then ?é = -gﬁé, where 5; is
a unit vector in the z-direction.

For fluid motion, Newton's second law becomes
%“—+-;-V(E-E)+(Vx'6)xﬁ'=—%Vp-g32 3.2)

If the vorticity V X u is zero, the fluid is irrotational. Generally,
fluid motion is irrotational if it results from conservative forces. In
deep water with small surface viscosity, the effect of vorticity onover-
all wave dynamics is negligible [Phillips, 1966, p. 36]; therefore, ir-
rotational fluid motion will be assumed.

In addition to the equation of motion, there is the continuity

equation

o(pu_ ) o(pu ) O(pu )
dp x y z"
- S S~ . ~a

Because the total derivative dp/dt is

dp _Sp , dpdx  Jdpd op dz
Nttt ar

the continuity equation in vector form becomes
1 dp -
— o . =0 .
5 at +V s u (3.3)

which can be derived by applying the law of conservation of mass to a
small fluid volume similar to that in Fig. 16.
From the continuity equation, V . u =0 if the fluid is in-

compressible (dp/dt = 0). Sea water is nearly incompressiblc and can
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be so assumed with insignificant effect on the surface-wave dynamics of

interest. These incompressible and irrotational properties will permit
the use of scalar functions rather than the velocity vector in the der-~
ivation of second-order wave-height spectra.
From the irrotational condition V Xu = 0, u canbewritten
as the gradient of a scalar because
VX (V) =0
In fluid dynamics, ¢ 1s the velocity potential and is related to u by

o = u (3.4)

The minus sign originates from an alternate method for deriving o;

namely,

b
% -0 = [ T.d

a
where s defines a path from a to b. When ¢, =@, 1s path indepen-
dent, both the irrotational condition and (2.4) will result.

If the fluid is incompressible, then from (3.3),

‘Y .u=0

and @ obeys laplace's equation

Vo = 0 (3.5)

The velocity potential and (3.5) will be used to derive the second-order
wave-height spectrum.

2. Wave Equation

If the sccond-order terms and the clfcct of pressurce force are

neglected in the cquation of motion (3.2), the result, in conjunction
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with the continuity equation, will require that the ocean-surface pro-
file must obey a wave equation

2
Vzﬂ(x,y,t) = "]‘-" "—‘n—""l""a (x t) (3.6)
c? at’"

where n(x,y,t) is surface displacement from some reference (Fig. 17),
and C is the phase velocity of the propagating wave. The general so-
lution to the wave equation isa sinusoid traveling at phase velocity C.
As a result, ocean-surface wave-height spectra will contain sinusoidal
components, each obeving the wave equation. A complete solution requires
the imposition of boundary conditions. These constraints, wfitten in
terms of the velocity potential, will Le combined with lLaplace's equa-
tion to obtain a second-order wave-height directional spectrum as a
function of first~order spectra whose componencs obeya first-order dis-

persion relationship.

TIME t,
Zg'q (‘,")
ﬂ‘*o»*l’; '
i
Xo ot
.
%’ WAVE PROPAGATION
TIME to

229 (x,t5)

Xo"’C( '2‘f|)

Fig. 17. WAVE PROFILE IN ONE DIMENSION. As
time passes, the wave profile appears to be
rigid and to move with velocity C.
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3. Boundary Conditiong

The boundary conditicns for ocean surfaces are of two types—-
fixed and free (Fig. 18). A fixed boundary, such as the ocean botton,
has no component of velocity perpendicular to the boundary. In terms
of velocity potential, this condition is

=0 (3.7)

vhere the rigid boundary is a plane perpendicular to the z-axis at a
depth h.

)

AIR
FREE BOUNDARY AT z=7(x,y,1)

WATER

FIXED BOUNDARY AT 2= -h

/80T TOM X

Fig. 18. FLUID BOUNDARIES.

There are two free-surface boundary conditions--kinematic and
dynamic. The kinematic condition requires surface fluid particles to
remain at the surface. If points on the surface are represented by
n(x,y,t) and if =z 4is the position of a particle, then

n
o

d
5 2 - n&x,y,0)]
z=
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which states that the position of a fluid particle relative to the sur-
face profile or height must remain constant for all time if the particle
is on the surface (2 = 711). When expanded, this expression becomes

(Fz - g% - Uy 32 =Yy gg)

=0

Z=1)

In terms of velocity potential,

‘4‘: N:
Hy e

w = -
and the kinematic boundary condition becomes
9 gg gg ) gg )
R RTES RSy

The dynamic free-surface boundary condition requires that fluid

(3.8)

z="

at the suvrface must also conform to the equation of motion (3.2). Under
the condition of irrotational motion, (3.2) becomes

Vv - gf (3.9)

D

§“;+-;-V(E.E)=-

which, in component form, is

2
2 10 — == 149p
-dyt+-2-5;(u-u)—- o Oy
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where u has been replaced by -Vo in the time derivative. Multiply-
ing the first expression by dx, the second by dy, and the third by
dz and summing the results produces

d[—%+%(ﬁ-oa)]+gdz=--d-§- (3.10)

where
-Rarda Rt

is the total differential operator. Assuming a constant dehsity‘ 0 anu
integrating (3.10) yields

- g% + % @ . u) +gz + F(t) = - % (3.11)

where F(t) 1is a constant of integration that can be absorbed in ¢(x,
¥,z,t).

The dynamic boundary condition can be obtained by evaluating
(3.11) at the surface z = 1,

-3 [ @) @]

where u is written in terms of the velocity potential ¢. Overlying

(3.12)

Z=1)

atmospheric pressure is assumed to be ze;o because interest is not in
wind-generated waves but in wave-generated or second-order ocean waves.

The boundary conditions (3.8) and (3.12) are expressed as sca-
lar functions, a nice feature; they are also nonlinear which iz trouble~
some in that it requires resorting to perturbation techniques to find an
approximate o(x,y,z,t) to satisfy the conditions in (3.7), (3.8), and
(3.12).
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B. Second-Order Wave-Height Directional Spectrum

The results obtained above will now be combined to determine the
effects of nonlinearities (wave-wave interaction) on ocean~surface wave~-
height spectra. The analysis is carried to second-order and results in
a spectrum that is a nonlinear function of first~order spectra. As a
consequence, the rough-surface radar cross-section equations in Chapter
II can be rewritten as functions of first-order wave-height direc-

tional spectra and still contain the effects of ocean-wave nonlineari-
ties to second order.

1, Tick!s Method

The following analysis is based on Tick's second-order double-
perturbation method [Kinsman, 1965, p. 588] expanded to three dimensions.
To be consistent with Tick's formulation, the velocity potential is de-
fined by u = V®. Changing the sign of @ and using subscripts to in-
dicate partial differentiation reduces the boundary conditions (3.7),
(3.8), and (3.12) to (where subscripts denote partial differentiation)

?, -0 a8 2z - = (3;13a)
e * Oy * Oyly = B (3.13b)
=1
1 ({2 2 2
BN + 9, +3 ((Px oo+ CPZ) g = 0 (3.13¢)

Deep water is assumed by allowing the rigid boundary to recede to =-w.
The first perturbation in Tick's method results from expanding
o(x,y,z,t) in a Taylor series about the point z =0,

fp(x,y,z,t) = cp(xoszvt) IZ:‘-O

L 0, y,z,t)

2
L Lo okx,y,7,t) L2
¥/,

72 F ..
2 2
= " 3.14)
z=0 s, #=t) (
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Substituting this expansion into the kinematic and dynamic boundary con-
ditions (3.13b) and (3.13c) and retaining only terms to second order in
¢ and 1 provides

g + Py + 000 =0, + 10, (3.150)

z=0

=0 (3.15b)

+Q + rx (o 402 4+ o2
BN+ @ + 0t + 5 (% * % * )|

from which 1 can be obtained to second order by noting that, to main-
tain the expression to second order, the third term in (3.15b) requires
knowing 1 to first order. Condition (3.15b) defines 7 to first or-

der as

(1) 1 (1)
i = - g ¢t

z=0

where the superscripts denote the order. Consequently, 17 to second
order is

1 1 1 ({2 2 2
M= - E[q)t - -g- q)zt(pt + 3 ((px + Q)y + cpz)] (3.16)

z=0

This expression can now be differentiated with respect to x, y, and ¢,
separately, and the results can be substituted into the kinematic bound-
ary condition (3.15a) for Ny ny, and nt. To second order,

1
Pup ¥ 8P = g (pePpy * Dpee®) T 00y T 20Ty T B0y + Oy,

z=0

(3.17)

This partial differential equation contains both the kinematic and dyna~-
mic boundary conditions and is written completely in terms of the veloc-
ity potential function. It is to be solved under the constraints of
Laplace's equation (3.5) and the condition stated in (3.13a). Wwhen ¢
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is found from (r.17), the surface displacement 17 follows directly from
(3.16). The Fourier transform of the autocorrelation function of 7 wiil
provide the desired surface wave~height spectrum to second oxrder.

The second perturbation in Tick's double-perturbation method

results from solving (3.17) to first order in ¢ and then using the
T first-order solution to obtain a second-order solution. To first order,
(3.17) is
D.. + 89 =0 (3.18)
3 tt z 70
{
4
Normally, when solving differential equations, a general form for the
E solution is asgumed and the original differential equation plus any aux-
C iliary equations are used to determine the complete solution. The first-
' order term in (3.16),
o .
= - (3.19)
- g z=0
L
suggests a general form for ¢. Because 717 was represented by a Fourier
series in Chapter II, a series solution in the following form is sought,
€
olx,y,z,t) = z A(m,n,I,z) expl-ia(mx + ny) - iIwt]
mnl
¢ Applying laplace's equation qu) = 0 to this series yields
22 22
Azz(m,n,I,z) -~ (am +an) A(m,n,I,z)| expl~ia(mx +ny) - 1iIwt] = O
mnl
I8 .
L
If this differential equation is to be zero for all x, y, and t, then,
:
! 2
[ Azz(m,n,I,z) - kmnA(m,n,I,z) =0
i

90

T
i
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for each term, where kin = azm2 + aznz, and the solution takes the
form of

A(m,n,I,z) = B, (m,n,I) exp(kmnz) + By(m,n,I) exp(-k z)

The rigid-surface boundary condition

%-—90 as Z -3 =0

requires that Bz(m,n,I) = 0 for all m,n,I; therefore, with the sub-

script on B, omitted,

1

o(x,y,z,t) = mZI B(m,n,I) exp(kmnz) expl-ia(mx + ny) - ilwt] 3.20)

When this expression is applied to (3.19), the first-order wave height

becomes

1 1
Tl( L z (-iIw) B(l)(m,n,l) expl-ia(mx + ny) - ilwt]
€ mn1
(1)
vhere the superscripts explicitly indicate the order. The B (n,n,I)

are obtained by equating the coefficients in this expression for n(l)

with those in the random-surface representation

n(l) = ZI P(m,n,I) expl-ia(mx + ny) - iIwt]

mn

ngsumed in Chapter II. Combining the results with (3.20) provides the

first-order solution,

(p(l) = Z - ig Fm,,1) exp(k z) expl-ia(mx +ny) - iIwt]
Iw mn
mnJ (3.21)
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vhich, when substituted into the original differential equation (3.18),
yields

gkmn = (Iw)2 (3.22)

and this becomes

gk = 92 (k2 = p2 + q2) (3.23)

in the limit of large L and T, vhere

am - p
an —»q

Iw 59

The above expression is a dispersion relationship for first-order ocean
waves that obey the wave equation and, from it, the phase velocity of

ocean waves can be determined,
Y’ g g
CE-=2 =+ 2 3.24)

which is a function of the wave frequency Q.
Returning to the search for 7 to second order, it can be
seen by rewriting (3.16) with the order explicitly denoted that a first-

order solution for ¢ is not sufficient to determine 7 to second or-

der,
2 2 2
(2) 1)@ 1 (1) 1) 1 (1) (1) (&)
" ='E{“’t & %t % +5[(q’x ) +<“’Y) +(°pz )]}z:ﬂ
(3.25)
h (1) (2)
ere 7 has been replaced by —mt/g from (3.19). The term P,

requires that 9 be known to second order. Substituting the first-or-
der solution for ¢ back into the original diffcrential equation (3.17)
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(1) (1) (1) (1,

provides ¢%t = -gq;

to be solved for second-order ¢ is

and P4y = 89,

2z therefore, the equation

(1) (2) _ _2( 1 @ W 1) @) ﬂ’) (3.26)

q)1:1: + g¢§ Qx th + Qy wyt + ¢E q&t

z=0

A general solution in the form of (3.20) is again assumed for w(Z)’

w(z)(x,y,z,t) = ji B(z)(m,n,l) exp(kmnz) expl-ia(mx + ny) - iIwt]
mnI

Substituting this solution into the left side of the differential equa-

tion (3.26) and the first-order solution (3.21) into the right side
yields

z B(z)(m,n,I)(gkm - 1% &8
mn]

% T ot TO ¢ ) "
= 2 ZL am'g ESE_fg_Ll-l el . Zi iam"gP(m" ,n",1") e
m'n'1’ v m'"n"1"

N t nt o1 4 . "
+ 2 21 an'g ESE—%%;LZ—A e . 21 ian"gP(m" ,n",1") "

m'ntIt " "
N P(m',n',I') u' y wy ua"
- L]
2 gkm th? T'w e igkmunnp(m" ,n",I") e

m'n'I' m"n"I"

(3.27)

vhere u = -ia(mx +ny) ~iIwt, u' = -ia(m'x +n'y) ~-iI'wt, etc. The
(m,n,I) can be determined by noting that the left
side of (3.27) is a Fourier series, and taking its Fourier transform
results in

coefficients B(z)




4

7 ;}7\5’45’ r:;ﬁ‘,,' AR

1 ﬂfzx Blm,n,I)( 2,2
, gk - I'w)
(2103 =% mn ’ mm

. exp[-ia(mo +m) x - 1a(n° +n)y-~- iw(Io + I) t] dxdydt

2 B(Z)(m,n,I)(skmn - 1% 8(m, +m) Bln, +mn) 8(I, + 1)

[« I « DA o

*
= B(z) {m ,n ,I )(gkm n - I§w2>
)

The Fourier transform of the right side requires the use of the convolu-
tion theorem where, if Z[x(t)] = X(w) and 2[y(t)] = Y(w), then

o0
£lx - y] = f x(wo - w) Y(w) dw
-0
For discrete variables,
0 —
f x(wo - w) Y(w) dw —;Z x(mo - m) Y(w)
-00 n
The convolution theorem on the right side of (3.27) provides

o" 0 O mn

*
3(2) (m ,n ,I )(gk - Iiwz)
oo

*tmt nt Y
= -2 z am'g g—“‘l—#&-—l———“. ia(m -m')gp*(m -m? , 1 -n' ’ I - I')
n'n' 1’ w [¢] [o] (o] [+]

P*(m',n?,1') *
- 2 1 2.0 L0 ,2 ) -nt -mt* -n! -1t
2 an'g 2 ia(no n')gP (m0 m*,n -n', Io I')

m'n*1? I °
N\ P*(m' ,n',I)
Pl Y S RS -m? -n? -7t
2 '3 LA I'w gk, -m',n -n'p*(mo ',y I,=1)
m'n*I1? o o
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Dividing through by (gkmono - Izwz), tgkipg the conjugate of both sides,
and dropping the subscript o determines the B(z)(m,n ,I) which are the
(2)

coefficients in the series expansion for ¢ . To second-order, then,

k =z
mn u
e e

2 2
mnI(gkmn-Iw)

(P(Z)(xvy’z t) = 21g2

2 2
. 4 - 1 ] 4 wnt -
m'n'I? [a m'@m - m') +anln-nt) km'n'km-m',n-n']

. P(m*,n',I') P(m ~m*', n -n', I - I?t)
I'w

(3.28)

This series can be verified as a second-order solution by substituting

cp(z) and cp(l) back into the original equation (3.26). Replacing Q)(l)

2 2
and (p( ) with (3.21) and (3.28) in the equation for n( ), performing
the indicated differentiations, and evaluating the result at z =0 de-
rives a second-order surface height in terms of the random coefficients

of the first-order Fourier series,

Iw eu
% Z 3 2

mnl gkmn-Iw

2
n()

(x,y,t) =

2 2
[am'(m-m')+a(n—n')-k,,k . ,]
i m'n' m-m',n-n

 P(m',n',1') Pm - m', n - n*, I - 1I")
I'w

“ -4 '
+ >_ P(m,n,I1) e - 2 k o Pn',nt,1%) ot
mnl m*nt'i? (3.29)
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_g am P(m,n,1) u Zz apt B(m',n',I) ut
mn Iw m*n'I? thw
-E z an P(m,n,I) U z apt m',n',I%) eu'
2 &1 Iw e Iy
+ & N x Pm,n,I) ol . ES Kk P(m',n*,I') u'
2 ‘-& mn Iw m'aiT m'n't I'w
(3.29)
Cont.
(2)

2. Second-Order Wave-Height Spectrum from qrz

The second-order wave-height spectrum can be obtained from
(3.29) by evaluating the autocorrelation function

R(xl - xz’ yl - y2, tl - tz) = <q(x13yl't1) n*(xziyzltz)) = R(x’y’t)

(3.30)

and taking a three-dimensional Fourier transform. The transform over x
and y places the spectrum in k-space; the transform over t places it
in the frequency domain.

Again, as in Chapter II, only a single~term example from
(3.29) is required to illustrate the techniques for calculating the
second-order spectrum. All product terms resulting from (3.30) will
contain the product of four random variables. Averaging over this four-
fold product requires the three-term expansions in Chapter II1.C.4.b.
When the first term of (3.29) is used in (3.30), the fourfold a,erage
to be evaluated is

(P(m*,n*,1') P(m - m*, n - n', I - I*') P*(m"*,n"*,1"")

. P*(m" - m"" n" - n“" 1-" - I"')) . (3.31)
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= (P(m',n*,I') P(m = m*, n = n', I - 1I'))

. (P*@"',n"*,I"Y) P*@" - o"', 0" - a"t, 1" - I"1))
+ (P(m',n?,1') P*@"",n",1""))

« (P(m -m', n =n', I ~1*) P*@" - m"*, 0" - 0", 1" - I"M))
+ (P(m?,n*,1') P*@" -~ n"*, 0" - n"t, 1" - 1I"Y))

- (P(m ~m', n ~n*, I ~1I*)P*m"*,n"*,1"")) (3.31)
Cont.

where the first term requires

m,n,I,m",n",I1" =0 (3.32a)

for a nonzero average. The second and third terms have the following

index constraints:

17"t ”n
' mn

m' = m =
n' =n"* n =n" : (3.32b)
I' =1 I=1"
and
m=mn" n"! =m - m'
n =n" n"* =n - n* (3.32¢)
I=1" " =1-1

Examination of (3.29) with (3.32a) applied reveals that the
first-term average in (3.31) is a constant; therefore, the corresponding
spectrum is concentrated at zero frequency. This term denotes a per-
fectly smooth surface and is consistent with the corresponding terms in
the scattering theory that represent scattering from a planar surface.
All averages of nn* with (3.32a) applied have the same form and will
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contribute to the specular radar cross section. These terms will not
be considered further because the incoherent radar cross section is the
primary concern here.

Applying (3.32b) to (3.30), again for the first term in the

expression for 'q(z) yields

2 =~iT
2
mnl 2 2)

gkmn -Iw

2

2 ¢ - m? 2 ? - 1 -
m'niI? [a '@ = m') +ant@-ah km'n’km--m',n-n'

H

2
. (21t3> W(am',an',I'w) W(am ~ am®, an - an', Iwv - I'w)

L2'1‘ (I'w)2

where the subscripts on R indicate which terms in (3.29) are averaged,

and

T = [m(x1 - x2) a + n(y1 - yz) a + Iw(t1 - tz)]

Taking the limit of large L and T and changing the variables of in-

tegration trom m,n,I to p,q,? results in

2
J-II [p'(p =P +a'(a-al) - kp'.q'kp-p'.q-q']

t L - ’ - ] - ]
. yl(p',q ,2') wip 121_;_2:1 q’, & - &) dp'dq'd0* dpdqd?
1ot

98




et R S s i

The first-order spectra in (3.33) indicate that two ocean
waves contribute to the second-order spectrum for a given set p, 4,
p', and q'. The propagation consiants of these waves are

T Py
kl =p ax +q ay

N

x -pt) & -
k2 = (p P a_ + (q q*) a
from which

t(p ~ p?) +qf -q') =k k
[P (p ~ ") q'(q ~ q') p'q' p-p! 'q..q']

in (3.33) can be rewritten as

Gy ¢k, - k.k,)
where k = [k, | amd k, = |k,]|.
¥hen all terms resulting from the Fourier transform of (3.30)

are combined, the second~order ocean-surface wave-height spectrum be-

comes
2
2
(2) 1 - - 29
w (PoQ.9)=-ng+k+(kk-k kol - (' _')
) B R R e QZ_gka‘mLsTy
P
. W(p',q’,2*) W(p ~ p', q - q', Q@ - Q') dp’dq'dQ*
(3.34)

vhere kpq = Jp"'+q . This expression can be simplified by enforcing
the dispersion relationship (3.24),

0 = & Ngk

Under this condition, the first-order spectra can be written ns
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W(p*,q',0') = W(p',q") B(Q* % [gk)
Wp -p', q-q", &-0Q") =Wp -p', q-q') 8(Q - Q" £ jgk))

which, when substituted into (3.34), allows integration over {I' because
of the delta functions,

2
2
2 1 - = 20
W( )(p,Q,Q) =3 jT ky + k2 + sgn(klkz - k1 . k2) 1 - 3 > aj%_
= 9 - wB

.50 * w * wy) w(p*,q') W(p -p', q-q') dp'dq’
(3.35)

vhere wl = ﬁkl, wz = fgkz, wB = /gkpq, and sgn =1 1if the signs
within the delta function are the same and sgn = -1 1f they are dif-

ferent. The second-order spectrum is seen to be composed of waves that
result from the nonlinear interaction between pairs of first-order waves
obeying the dispersion relationship.

In Chapter IV, Eq. (3.35) will be combined with the results
obtained in Chapter II to derive an expression for ocean-surface radar
cross section that includes both electromagnetic and hydrodynamic ef-
fects to second order. First, however, some possible models for first-

order ocean-surface wave-height spectra will be considered.

C. First-Order Directional Spectrum Models

First-order spectra comprise the freely propagating ocean waves
that obey the dispersion relationship (3.23). They appear in the sec~
ond~-order expressions for the radar cross section and directional spec-
trum derived previously and must be represented either empirically or
analytically if those expressions are to be evaluated. In the following
discugsion, some of the proposed analytical models for first~-order di-

rectional spectra are described.
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3 For the spectra to be considered here, their directional and ampli-

'f » tude aspects are assumed separable. For example, for waves traveling at
an angle © with respect to some reference axis (usually along the wind
direction), the wave-height directional spectrum can be written as

S(w,8) = d(w) G(O)

where o(w) is a nondirectional amplitude spectrum (w is the radian
wave frequency) and G(8) is a directional factor such that

2%
f S(w,8) d® = d(w)
o .

1, The Amplitude Spectrum t

S. A. Kitaigorodskii [Pierson and Moskowitz, 1964] has postu-
lated that the dominant part of the amplitude spectrum ¢(w) is a func-
tion of only four variables--wave frequency, gravity, wind speed, and
fetch (the distance over wpich the wind-ocean interaction takes place).
If an unlimited fetch and a saturated~r sea exist, the amplitude spectrum
hecomes a function of gravity and frequency only,

@(0’) = f(w,g)

In the MKS system, the units of ¢(w) are meters squared per
radian per second or meters squared seconds; therefore, the dimensions
are length squared'time. To obtain these dimensions from ®w and g
only requires that

2

E_
o(w) « =
W

TA sea is saturated at some wave frequency if the height of the waves at

that frequency no longer increases with an increase in wind speed. At
saturation, these ocean waves cannot support additional wind energy, and
the excess energy transfers to the longer waves that are not yet satu-
rated.
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Adding a constant of proportionality results in

(3.36)

which is the Phillips saturation spectrum [Phillips, 1958]. Observed
values of the equilibrium range constant Be vary between 0.8 X 10“'2
and 1.48 x 1072 (Phillips, 1966, p. 114]. For a given wind speed, waves
with frequencies below a certain cutoff yalue no longer develop. An of-
ten used cutoff for (3.36) is derived from the point where wind and wave
speeds are the same. If it is assumed that waves cannot travel faster
than the wind driving them, then, from the dispersion relationship
(3.24),

for w > g/u
o(w) =< © (3.37)
0 for w < g/u

vhere u 1is the wind speed.
With observed spectra as a basis, Pierson and Moskowitz (1964)
proposed the following form for the amplitude spectrum:

2

Bég 4
d(w) = 3 exp[-v(wc/w) J (3.38)
(V)

where the Phillips saturation spectrum has been modified by an exponen-
tial term whose value is a function of wind speed through wc = g/u.
Figure 19 illustrates both the Phillips saturation and the Plerson-Mos-
kowitz spectra for 20 and 40 knot winds when Bé = 0,81 X 10"2 and v =
0.74. In the Pierson-Moskowitz spectra, considerable energy can be ob-
served in waves traveling faster than the wind that generates them; ho;-
ever, no known mechanisw exists for the direct transfer of wind energy

to these faster waves, and it is assumed that they result from the
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Fig. 19. PHILLIPS SATURATION AND PIERSON-MOSKOWITZ AMPLI-
TUDE SPECTRA. The cutoff frequencies for the Phillips
spectrum correspond to waves traveling at the indicated
wind speed.

pznlinear interactions among slower waves. Although second-order waves
cannot propagate freely, third- and higher order solutions to the ejua-
tion of motion predict resonant waves that grow with time and that obey
the first-order dispersion relationship [Kinsman, 1965, th. 13]. Conse~-

quently, first-order wave-height spectra contain all waves, wind driven
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or the result of wave-wave interactions, that obey this dispersion re-
lationship.

There are other forms for amplitude spectra [Kinsman, 1965],
but (3.37) and (3.38) serve as adequate examples.

2, Directional Aspects

Just as 9(w) is associated with wind speed, the directional
aspects of the spectrum are often associated with wind direction. 1In
one of the examples to be considered, however, these properties are a
function of wind and wave speeds in addition to wind direction.

One of the simplest directional forms is semi-isotropic (Fig.
20), where

for ¢ - /2 <0 <O + n/2

R

G(@) =

0 ofherwise

and ¢ is the wind direction with respect to some reference. Combining
this G(@) with (3.37) provides the Phillips semi-isotropic directional

spectrum
2
B.&
for W>g/u and @ - /2 <8 <P + n/2
S(u,8) =¢ ™ (3.39)

(=]

otherwise

A similar expression is obtained when thé Pierson-Moskowitz amplitude

spectrum is combined with the semi-isotropic a.sumption,

Bg2

e 5 exp[-—v(wc/w)4] for ¢ n/2<0<Q + n/2
7w

S(w,0) = (3.49)

0 otherwise
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Fig. 20. SEMI-ISOTROPIC DIRECTIONAL DISTRIBUTION.

Another class of directional functions that allows S(w,0) to
decrease gradually as © moves from the wind direction is represented
by

cos® (aB)

N (3.41)

G@) =

wvhere 6 = 0 specifies the wind direction and N 1is a normalization
constant such that

21
f G@®) d®@ =1
0

In one form of (3.41), s =2, a =0.5, and -x <@ < x; therefore,
G®) =  cos” (9) for -1 <O < (3.42)

This expression represents a cardioid distribution (Fig. 21) which al-
lows wave propagation in all directions except the one against the wind.
There is little evidence to indicate that this or any other function
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Fig. 21. CARDIOID DIRECTIONAL DISTRIBUTION.

adequately describes the directional propagation of wind-driven ocean
waves. It has been observed [Tyler et al, 1974] that waves do propagate
at angles greater than 90° with respect to the wind and, for this reason,
(3.42) is expected to be a better model than semi-isotropic propagation.
The exponent 2 in the cosine distribution has been used by others [Bar-
rick et al, 1974] and is chosen here simply for convenience. Equation
(3.42) will be combined with the Pierson-Moskowitz amplitude spectrum in
Chapter IV to illustrate the dependence of radar cross section on direc-
tional ocean-wave propagation.

In a summary of the evolution of the cosine form of G(8), Munk
[Tyler et al, 1974] introduced another form of the cosine type. His ver-
sion is a modification of one introduced by Longuet-Higgins, Cartwright,
and Smith [Tyler, 1974] where

coss @/2)

6® = =%

-t <O<n (3.43)

and s 1is a function of ocean-wave frequency and wind speed. The argu-
ment i5 that lower frequency waves traveling at speeds approaching that
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of the wind should be confined to a narrow region about the wind direc-
tion, indicating large values for s. Higher frequency waves traveling

substantially slower than the wind are allowed a wider range, indicating
values of s =~ 1 (Fig. 22).

WAVE PROPAGATION WIND DIRECTION
DIRECTION

cos*(0/2)
6(8)= N(S)

N(S)=[ G@1d0

Fig. 22. COSINE DIRECTIONAL DISTRIBUTION.

Munk expanded (3.43) to allow for a small amount of energy
traveling opposite to the wind and proposed a relationship between wind -
speed, wave speed, and s. This modified directional function is

e+ -2¢ cos® (8/2)]

G©) = N (s)

-t <8 <x (3.44)

where ¢ 1s assumed small compared to 1. The normalization factor N
is

7t
N(s) = f G®) d® = 2ne + (1 - €) L(s)
1t
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L(s) = 2n*/? —%————r I(,( "fﬁ’

and I' 1is the gamma function.

In seeking a spread factor s as a function of wind speed u,
Munk accounts for variations in measured wind speed with anemometer
height by assuming a logarithmic wind profile such that

) = ot z (3.45
u(z) = - M o .45)
[»]
where
z = height at vhich wind speed is measured

K = Karman's constant (=0.41)

Prandtl's shear~stress (or friction) velocity

[
i

and zo is defined as

(3.46)

W!*FN

z =40
o 2

X,

where A/K2 is Charnock's constant (=0.0156) and g is the accelera-
tion caused Ly gravity. Kinsman (1965, p. 560) provides a detailed de-
scription of the log profile and associated constants.

A given wind~speed profile can be characterized by the single
parameter u_ if the logarithmic assumption is valid and if measure-~
ments of u(z) are within the region of validity. Figure 23 plots
u(z) as a function of u, for wind-speed measurement heights of 2 and
12 m.

The next assumption relating s to wind speed is that, at
some height z,» @ resonance condition exists where the component of
wind spced in the dircction of wave propagation is equal to the veloc-
ity of propagation for that wave,
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u(zr) + cos @r = C (3.47)

1

wvhere C is the wave phase velocity and @r is the resonance angle
(Fig. 24). Some motivation and justification for this assumption can
be found in Phillips (1966, pp. 128-129). Combining (3.45), (3.46),
and (3.47) yields the resonance condition in terms of the friction ve-~

locity u

* ?
u, zrng
- cos ® =¢
K 2 i r
Au *
.2
§ 1o
E OGB -
(44
[}
o 06}
>
3
e 04
o
o Hs HEIGHT OF WIND SPEED
0.2} MEASUREMENT
0 -4 1 - 1 )
(] 10 20 30 40 80

WIND SPEED (knots)

Fig. 23. WIND SPEED VS FRICTION VEIOCITY FOR A LOGARITHMIC
WIND-SPEED PROFILE.

Munk assumed a resonance height zr proportional to the wavelength A
of the wave with velocity C; that is,

N
n
=i

where k = 2n/\A and A 1is a constant. The resonance condition then

becomes

sec © =y fn (AA-'1 u"z) (3.48)
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A WIND DIRECTION

ALLOWABLE PROPAGATION
DIRECTIONS FOR WAVES
WITH VELOCITY C ARE
CONFINED TO THE
SECTOR BETWEEN: O,

Fig. 24. ALLOWABLE PROPAGATION DIRECTIONS FOR RESONANT WAVES.
The resonance condition stetes that wind speed u(z,) at
some height 2z, 1is related to wave speed C by C = cos (@ )
+ u(z,), vhere @€, defines the limiting direction in whi
waves with velocity C can propagate.

where p =u,/(Ck) and C =+g/k from the dispersion relationship
(3.24).

When @r = 0, the allowable propagation region in Fig. 24
reduces to a single line that corresponds to the cutoff condition for
waves traveling faster than the wind. Under this constraint,

1= By i (AA-lp,; ) (3.49)

and the selection of a value for A determines "lo wvhich is the cut-
off value for p (Munk chose uo = 0.1, admittedly rather arbitrar-
ily). To obtain the single line corresponding to @r =0 in Fig. 24,
s must go to infinity in Eq. (3.43). For any @r, it is assumed that
cos” ((-v)r/Z) will have some finite and comstant value. In particular,
as |1 tends to infinity, @r tends to 90° and cos® (ru)r/z) = N2/2 for
the lower limit of s =1 chosen by Munk.
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From (3.43), (3.48), and the condition that N(s)G(®)) = NZ2/2,

. = m (1/2) 1<s<w (3.508)
m{%*% 1-1--2} R R
poin (AA Tu )
or, including (3.49),
s = m (1/2) . 1<s<w (3.500)
1 1 “’o/u
mlil= + = ©o>u>u
27201+ 2y, o (uo/p)T o

From the definitior of u, po/u = C/Co where Co is the cutoff veloc-

ity corresponding to “b’ and s becomes

i (1/2) l1<s <o
c/co

m l+l
2 " 201+ 2u fn (C/Co)]

s = (3.50¢)

} o0<c<c
(]

The spread factor s presented here is seen to be a function of both
wind speed (as represented by the friction velocity u*) and wave speed

C. The p-parameter conveniently combines both C and u making s a

*?
functic: of a single variable. Figure 25 plots the relationship between
w and s when p =0.1 and N(s) G@) = N2/2.

¥hen Eq. (3.44) is combined with the Phillips saturation am-
plitude spectrum (3.36), the result, attributed to Munk, is

2
BB ¢ 4+ - ¢) cos® (9/2)

w5 N(s)

S(w,8) = (3.51)

where s is defined by Eqs. (3.50).

The low-frequency cutoff condition for the Munk spectrum is
contained in s and is essentially the same as that contained in (3.37)
where wave speeds must be less than the wind speed. For example, when
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Fig. 25. SPREAD FACTOR s AS A FUNCTION OF THE u~PARAMETER.

¥

by = 0.1, the low-frequency cutoff occurs at 0.98 rad/sec for a 20 knot
wind measured at a height of 12 m (Fig. 23); the corresponding value for
the flat wind profile in (3.37) is 0.95 rad/sec. Figure 19 shows the
difference of 0.03 rad/sec to be negligible in view of the overall spec-
trum scale. Changing the value chosen for Hy changes the value of the
low-frequency cutoff proportionately and, hence, the agreement between
the cutoff obtained from the spread factor and that obtained from the
condition in (3.37).

3. Special Considerations for Second~Order Calculations

Not all first-order spectra models are adequate for calcula-
tions of radar cross section to second order although they may provide
excellent predictions of first-order cross sections. The reason is that

sccond-order cross scction is a function of the entire ocean~wave
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spectrum while first-order cross sections involve only a portion of the
spectrum. For example, consider the first-order term for incoherent ra-

dar cross section in (2.72),

Gw(w) « W(B sin O cos ¥ - Ba, B sin O sin g, w - w)

where £ sin 0 cos ¢ - Ao = kx and B sin O sin g = ky are the ccean~

wave propagation constants in the x- and y-~directions (Fig. 26). The

A

WIND DIRECTION
ky WAVE
|~ DIRECTION

o

Fig. 26. RELATIONSHIP BETWEEN OCEAN-WAVE AND
WIND DIRECTIONS.

frequency mo - 1s the ocean-wave radian frequency in terms of the in-
cident radio-wave radian frequency wo and the observed scattered radio-

wave radian frequency . Relationship (3.24) requires that

where k = ’ki + ki =B J(sin 6 cos ¢ - oz)2 + (sin 8 sin ¢)2; therefore,

the spectrum W can be written as

: 2 9 1/2
W(kx,ky,wo -W) = W(kx,ky) & W -w  jgp [(sin Bcos F-a)" +(sind sin @) ]
(3.52)
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becausg uz ~Ww 1is fixed by the values of kx and ky.

With the ocean-wave frequency set by kx and ky which, in
turn, are completely specified by the incident radio-~-wave frequency
through B and the incident and observation directions given by @, 4,
and <, there can be only a single ocean-wave frequency contributing to
the radar cross section for fixed radar geometry and transmitted radio
frequency; consequently, only a portion of the ocean-wave spectrum can
be observed. In particular, if the observations are confined to ocean
waves that are saturated, the Phillip's saturation spectrum (3.36) and
the Pierson~Moskowitz spectrum (3.38) will serve as good first-order am-
plitude spectra models (Fig. 19).

On the other hand, second-order radar cross sections for fixed
radar geometry and frequency involve the entire spectrum through the in-
tegral over all ocean-wave frequencies [see Eq. (2.72)]; therefore, the
ocean-wave model chosen for second-order calculatior: should represent
the ocean surface under both saturated and nonsaturated conditions. Con-
sequently, a model of the Pierson-Mockowitz form is preferable to the
Prillip's saturation model for nondirectional amplitude spectra, at least
for thes2 calculations.

All of the directional functions G(8) can be combined with
the Pierson-Moskowitz amplitude spectrum (3.38) to provide directional

spectra models suitable for second-order cross-section calculations.

4. First-Order Models in Terms of Wave Number

Thus far, ocean-wave directional spectra have been considered
only in terms of wave frequency and angle from the wind direction; how-
ever, the spectra in the expressions for radar cross section in Chapter
II are written as functions of ocean-wave yropagation constants in the
x- and y~directions. The transformation from the first form to the sec~

ond is obtained from the spectrum propert:,

2 o 27 © p0
(") = JOL sw,@(w,e) duwd® = I j Sk k (kx,ky) dk dk_
- —oom0 x'y (3.53)
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where (hz) is the mean square ocean-wave height.

The Jacobian J, as defined by the determinant in

ok ok
p. 4 x
oW o8

ok

ok
g

(3.54)

dk dk_ = dud®
V¥

can be made exact with the aid of (3.24) and Fig. 26. The result is

i 2
kxakcos (®+(p)=-°;—cos © + o)

&

: 2
: W
kK = — gin (® +

v g P)

Performing the partial differentiation indicated by (3.54) and evaluat-

ing the determinant yields

W

2
(3.55)

or

g 2 2 1/2 -1{y
Sk Jk (kx,ky) = = - 2. 373 Sw,@ g(kx + ky) s tan kx -9
xy 2 g{l; + k
N X y
(3.55b)
In Chapter II.A, the surface-height spcctrum W defined by Rice is four

times that defined by (3.53); hence,
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4S(kx,ky) - W(kx,ky)

Table 1 summarizes both forms of the first-order directional spectra
presented here (¢ = 0 in the table).

D. A Model for Sw "%

The first-order spectra models considered above describe only those
ocean waves created by local winds. Waves also may be present that were
generated by a distant wind system (or storm) and then have propagated
to the local region; such waves arm called "swell” [Kinsman, 1965, Ch. 1].

Swell generally consists of higher energy low-frequency waves that
have survived the damping effects cf turbulence and viscosity. In swell
originating in very distant storms, only the lowest frequency waves exist
and these propagate in a single directinn through the local region (Fig.
27).

A wave-height model for swell could be

2
Ss(kx,ky) = (h") Bk, -k ) s(ky - kyo) (3.56)

where (hz) is the mean-square height of swell, consisting of a single
frequency

2 2 vi/2

u:='jgégu)4-ky°)

and traveling in the direction given by tan-1 (kyo/kxo)°

Because there are no ocean wave-wave interactions to first-order,
the total first-order wave-height spectrum of a given ocean region can
be written as the supervosition of a local wind-generated spectrum
sw(kx,ky) and the swell spectrum Ss(kx,ky); that is,

S(kx,ky) = Sw(kx,ky) + Ss(kx,ky) (3.57)
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Fig. 27. PROPAGATION OF SWELL. To a local observer, swell from a
distant storm appears to be traveling in a single direction.

If local swell originates from more than one storm or wind system, its
spectrum can be represented by a superposition of the individual swell
spectra from each storm. Only a single source is considered here and
in the remaining chapters.

To be realistic, a model for swell should allow for a small spread
in wave frequency and, possibly, for deviations in the local propagation
direction. Such a model is obtained from (3.56) by replacing the delta
functions with gaussian functions,

2 2

2 k -k k -k
s ) = g el (2) el 3 (20 | oo
y kxky Kkx Ky
The ka and ka are standusrd deviations of the x- and y-components

of the ocean-wave propagation constant about the means kxm and kym'
respectively. As these deviations tend to zero, the gaussian functions
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become delts functions [Thomas, 1969, p. 587] and (3.58) reverts to
{3.56).

The use of gaussian functions in (3.58) is not meant to imply that
the actual distribution of swell-propagation constants is necessarily
gaussian. The intent is to provide a model that allows for a small but
finite band of wave frequencies and a small angular distribution of prop-
agation directions. As the origin of swell becomes further removed from
the local region, any model is expected to approach that of (3.56);
therefore, it okx and oky are kept small, the difference between the
gaussian and other possible models will be minimal.

To relate okx and Uky to variations in the swell~propagation
constant and propagation direction, consider the geometry in Fig. 28,
where km is the mean value of the propagation constant and Gm spec-
ifies the mean propagation direction. let Ak and AP represent the
maximum deviations of the ocean-wave propagation constant and direction
from their mean values, respertively. The maximum positive deviation of

the x-component kx from its mean value kxm is

M =(k + k) cos (B -0) -k cos @ (3.59)
X n m m m

wvhere k cos 6 =k .
m n Xm

17 |

6m
e k1B

g

Fig. 28. DEVIATION OF A COMPONENT OF THE
SY®LL PROPAGATION CONSTANT.
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For small directional deviations, A9 << 1, cos (M) =1, and
sin (A9) ~ A9, Wwhen terms of order A? are neglected, (3.59) can be
approximated by

Nk =k M0 sin 6 + Ak cos 6 (3.60)
ps m m 0

A maximum negative deviation ~Akx occurs when Ak is neecative and A9
is positive; therefore, the r-component kx has a value in the range of
kxln * Akx, where Akx is defined in (3.60). A similar analysis shows
the maximum deviation of the y~component ky to be

MNe =k 20 cos 8 + Nk sin @ (3.61)
y m m m

Either of two arguments can be employed to relate the maximum devi-
ations Ak and Ak to the standard deviations o and o, . The
X y kx ky
first assumes that the gaussian function can be truncated for values of
the variables greatev than a few standard deviations from the mean. For
evample, at three standard deviations from the mean, the gaussian func-
tion has a valu= <f 1.1 percent of its peak; values at greater than three

can be corsidered negligible. The maximum deviation could be written as

Ak=30k

Alternately, rather than using maximum deviations for k and 6 in

(3.50) and (3.61), standard deviations o and o, could be assumed,

k 2]
such <that
= .62
O x kmce sin Gm + 0, cos 2] (3.62a)
Uky = kmoe cos Gm + 0, sin Om (3.62b)

The 9, and 0, are not derived from the distributions of k and 6

k 0
obtained by transforming (3.58) from Cartesian to polar coordinates;

thev are simply a measure of the spread of k and 6 about their means.
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Because either method of selecting valves for ka and Uky is based
on approximations and assumptions, the form expressed in (3.62a) and
(3.62b) is chosen for simplicity.

In Chapter IV, calculations of radar cross section based on the
swell model (3.58) indicate that the mean values of k ~and ky are
all that are required to produce the effects of swell and that the
delta-function model (3.56) would suffice if it were amenable to numer-

ical analysis.

122

f“’:ﬁ




B i Y A e A 3+ 5 BT N oipls WS

P B T R RO SR o R I RGeS B S A g,

Chapter 1V

INTERPRETATION AND EVALUATION OF OCEAN-
SURFACE RADAR CROSS-SECTION INTEGRALS

The second-order results obtained in the previous two chapters will
be combined in this chapter to derive an integral expression for ocean-
surface incremental radar cross section per unit frequency that contains
both electromagnetic and hydrodynamic terms to second order. Section A
describes the transition from general time-varying surfaces to ocean sur-
faces. The concept of multiple Bragg scattering is introduced in Section
B and is shown to provide a physical interpretation of the cross-section
equations. Section C discusses the analytical techniques that will re~
duce these expressions to a form suitable'for numerical analysis, and the

results of this evaluation are presented in Section D.

A. Radar Cross Section for Ocean Surfaces

Expressions for the radar cross section of ocean surfaces can be
obtained from the general incoherent time-varying rough-surface cross-

section equations (2.72) and (2.74). Consider, for example,

4 2
va(w) = 4nB (a sin 6 - cos f) w(kx,ky,wo - W)

4 2
+ 1B jﬁ rwik, Lk, ,0) Wk, k. ,0 - - Q) dpdqd®
1 2 2
. s 1x" 1y x4y o 4.1)

where P2 represents the bracketed terms in (2.72). This expression
applies to ocean surfaces when hydrodynamic effects are introduced
through the spectra terms. In Chapter 111, the ocean-surface spectrum
was represented by first-order and higher terms of which the second-or-
der terms were derived as a function of the first-order terms (3.35).
This spectrum can be written as

W' (2)

w(kx,ky,u) = (kx,ky,Q) + W (kx,ky,ﬂ) + higher order terms

(4.2)
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Substituting (4.2) into (4.1) and retaining only terms to second order
leads to an equation that contains both electromagnetic and hy =amic

effects to second order,

1) (2)
U (W) = 4n'B (0 sin 6 - cos ) [ (kx,ky,Q) + W (kx,ky,n)]

) (1)

+ ‘.WB JI; (klx’kly’m w (k2x'k2y’wo - w - Q) dpdad®
(4.3)

For the first-order spectral terms, the relationship between ocean-wave

frequency and propagation constants kx and ky is determined by (3.24);

therefore, the spectrum can be written as

1/2
v P ko = v k) 5(9 ij;[kz + k2] ) (4.4)
x"y X'y X y

" as previously indicated in (3.52).
Either delta function that develops when (4.4) is substituted into

the integral portion of (4.3) allows integration over ( with the result
that

(1)

cxw(w) 41tB (0 sin 8 -~ cos @) { (B sin 6 cos @ - B, B sin O sin @)

2 21/2
.Swo-wt g[(BsinGcosﬁ-Ba) +({3sinesin¢)]

w(?‘)(s sin 6 cos @ - B, B sin O sin {, w, - m)}

+ jl 20 -p0,0) ¥ (Bsinocos f-p, pstnOstng-a)

o Bl =t L .+ ok .
olw = W ’,Jgkl ,J{;kz) dpdg (4.5)
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where the actual spectra arguments from (2.72) have been incorporated.
The subscript EM indicates that o' results entircly from electromag-

netic effects, and k represent

1°%2

Nkp - ﬁa)z + q2 and \&ﬁ sin 0 cos & - p)2 + (B sin 6 sin ¢ - q)2

respectively. The choice of signs in the delta functions in (4.5) is
not arbitrary, and considerable care will be taken in Section C.5 to
determine the regions of integration where each sign is valid.

The second-order spectrum in (4.5) has been expressed as an inte-

gral over first-order spectra in (3.35); therefore,

W(z)(B sin 6 cos @ - fa, P sin 6 sin &, w, - w)

= -;— jj PIZ{W(I)(D' ,q') w(l)(B sin O cos g_Ba_p', B sin 0 sin g_q')

. -w* gk, * 'dq’ )
B(wo w Jgkl gkz) dp'dq (4.6)

where PH represents the bracketed term in (3.35) and is the result of
hydrodynamic effects alone. The k1 and k2 in this expression do not
yet correspord to the definitions in (4.5); however, with the following

change of variables,

q' -q
p' »p -~ fO
the spectral temms and propagation constants become those in (4.5).
If the second-order spectrum in (4.5) is replaced by (4.6) and the

two integrals are then combined, the desired expression for incoherent

second-order incremental radar cross section per unit frequency becomes
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uw(w) n uﬁ‘(c( sin 6 - cos ¢)2 W(B #in 8 cos ¢ - A, P sin O sth @ - 8(n 2 ub‘,"

+np E‘t(pune - pcos § - qsin6)(px -~ p) - - (@ 8in 6 ~ cos @) b (p,q)]
b(p,q) b‘(l’v'l)

(B sin g ~pcos & ~qsin @px ~ p) - (asin @ -eo-ﬁf)b (,q)
b(p,q)

. ((Blineconﬂ-p)(conﬁ(aa-p)-qunﬂ) - (a.inO-m{l)b’(ﬂcmOmﬂ-pog‘ g-ua.ug-y)]
b*(BsinOcos P-p+px, Bsin O sin # - q)

3 2

2 - = 2
2(a o4n 6 - )Mk, +k (k-x-)x--.—\?-‘—
+2as cos § [1 3 ¢ oen (kg = k) - iy ( - - B) "1”2]}

+8(n 2w *w) Wp - fo,q) WA sin O cos F - p, B ein 6 sin g ~ q) dpdq (4.7)
vhere “

- ~ ~

k, = (p - pQ) 8y + Ay

E2=(ssin9cos¢-p) Qx-l-(ﬁsinesinﬁ-fﬂ Qy

with &k = [k,| and k, = [k,|. The radian ocean-wave frequencies are
(4] 1 = ,gkl
= ek,

2 9 1/2
Wg = g[(B sin 6 cos @ - BO)" + (B sin O sin g) ]

The doppler shift of the returned signal w, -W is denoted by 1. All
spectral terms are now first order.

A similar expression for a (w) can be obtained by replacing
(a sin 6 - cos ¢) with cos ¢ and multiplying the entire result by
(y cos 9)

Equation (4.7) for ovv(w) and its horizontal complement for
UHH(w) represent ocean-surface second-order bistatic radar cross sec-
tions (per unit area and frequency) and are presented here for the first

time. In Section C, Eq. (4.7) will be reduced to a backscatter
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grazing~incidence geometry and shown to be equivalent to previously pub-
lished results [Barrick, 1972] except for a difference in the relative
welghting between the electromagnetic and hydrodynamic contributions.

B. Bragg Scattering

The concept of Bragg or resonant scattering from periodic structures
has been shown to be responsible for the domirant first-order doppler-
shifted radar echoes from ocean surfaces [Crombie, 1955] and for the
smaller second-order sideband structure illustrated in Fig. 1 [Barrick,
1972]. 1In this section, this concept is examined and is also found to
apply to the expressions for bistatic-radar cross section.

1 The condition for radio-wave Bragg scattering requires that energy

c scattered from successive periods of a periodic structure must add in

phase [Brillouin, 1953, p. 117]. This condition can be written as

Sl e g B

where A\ 1is the wavelength of the incident radio wave and n 1is an in-
teger greater than zero (see Fig. 29). For a given periodic structure,

incident radio waves of a specific frequency and propagation direction

& are reflected in a particular direction under the Bragg condition. Con-

iy

p
X

versely, only structures of a specific period will reflect radio waves

in a specified direction for given incidence conditions. To determine

T

the relationship between the structure period and the incident- and re-
€ flected-wave directions and frequency, consider the geometry in Fig. 30

et as

where two parallel incident rays are reflected at Cartesian coordinates

S RS S P

(0,0,0) and (xo,yo,O). The distance d1 can be written as

B x B, +YB
S T ~ A, _ Oix o iy
d, = — (xoax + yoay) B B
3, |

where & denotes a unit vector, and
- 2
Bl =p=5

127




¢

C

€

>
Bi
e

PERIODIC
STRUCTURE

Fig. 29. REFLECTION FROM A PERIODIC
STRUCTURE. When di +dg =n\ (n is an
integer), reflected radio waves add in
phase and Bragg scattering occurs.

Fig. 30,

PERIODIC
STRUCTURE

BRAGG-SCATTERING GEOMETRY.
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Similarly, d_, can be written as

2 |
E ® _ |
B xf . +yB
d. = - r.(xa +ya)=_orx o' ry
1 2 IB.| o x oy )
r t
& The Bragg condition d1+ d2 = A becomes
xo(six - Brx) + yo(B:ly - Bry) =
P B
or
1 xo(B:lx - Brx) + yo(B:ly - Bry) = 2 (4.8)
| €
The integer n 1is taken to be unity.
Equation (4.8) relates the components of the radio-wave propagation
constant to point (xo,yo,o). A similar expression relating the orienta-
€~ tion and period of the periodic structure to the same point can be de-
‘ rived and combined with (4.8) to determine the relationship between ra-
dio-wave period and direction and the structure period and orientatxion.
A direction can be assigned to the periodic structure by defining
1 €
L=L4& +La&
Xx Yy
¢ such that |L| = L, where L is the period length (Fig. 31). This di-
- rection will be associated with the propagation direction of an ocean-
wave train which is a moving periodic structure. The 1length of the
structure can be express d as
e
J ) —
L A
I’ (xoax + yoay) =L
; or
€ y |
Lxxo + Lyyo = L (4.9) i
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Fig. 31. A DIRECTIONAL PERIODIC
STRUCTURE.

If k is definea as

o P LRt 1 ¥ T

E |
i

= A A
k cos @ a_ + k sin @ ay

where k = 2n/L, then p =k cos ¢ and q =k sin @ represent the x-~
& and y-components of the propagation constant for an ocean wave of length
L.

L L e

Because ros @ = Lx/L and sin.w = Ly/L, then D = 21er/L2 and
2
q= ZnLy/L , and Eq. (4.9) then becomes

<o M T, PR

£
H
1 pX, +qy = 2= (4.10)
]
;f which, combined with (4.8), provides a relationship between the radio-
1 Y . vave and ocean-wave (moving periodic structure) propagation cornstants,
1 [p B (Bix - Brx)] %o * [é - (Biy - B'ry)] Yo © 0 (4.11)
i
: A little thought reveals that point (xo,yb) is not unique and that
- § (4.11) holds for any choice of X, and Vo3 therefore,
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p= t(Bix B Brx)

(4.12)

= (B B..)

iy ~ Fry

ffe]
1

where the choice of signs indicates that T could have been chosen in
the opposite direction. From the scattering geometry in Fig. 32,

Byx = P ﬂiy=0
B = B sin @ cos ¢ Bry =B sin 6 sin ¢

and (4.12) becomes

B sin 8 cos @ - Ba

o
!

B sin 6 sin &

K-
il

The spectrum in the first-order term in (4.7) is to be evaluated at pre-~
cisely these values of p and ¢q; as a result, 1 first-order contribu-
tion to the radar cross section is made by only those ocean waves (or,

more correctly, by those components in Rice's model) that meet the Bragg

condition for n = 1.

INCIDENT (X
RAY,

-~

RAY SCATTERED
TOWARD OBSERVATION
POINT

> X

Fig. 32. INCIDENT- AND REFLECTED-RAY GEOMETRY .

To explain the scecond-order terms in (4.7) by means of a double
Bragg-scatiering process (Fig. 33), consider iwo ocean wave trains whose

propagation constunls are designated by pl,q1 and pz,qz, where p
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Fig. 33. DOUBLE BRAGG~SCATTERING GEOMETRY.

N

and q represent the x- and y-components of the propagation constants,

respectively. Double Bragg scattering occurs when radio waves scattered
t from one wave train [according to the conditions stated in (4.12)] are,

in turn, Bragg scattered by a second wave train.

Assume that the propagation constant of the intermediate radio wave

(the wave scattered from the first ocean-wave train and incident on the

& second) is

- A A ~
B = pa_ + qay +ra, (4.13)

where |P| = 2n/A. Conditions (4.12) applied to the first wave train

require that
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and, hence,

P, =P - B
(4.14)
qlh‘q
Bragg scattering from the second wave train requires that
Pig =P B = B sin 6 cos ]
Biy =q Bry = sin @ sin ¢
and, therefore,
p, = P sin 6 cos F - p
(4.15)
q, = Bsin 8 sin g - q

The spectra in the second-order terms in (4.7) are to be evaluated
at exactly the points specified by (4.14) and (4.15) which are the con-
ditions for double Bragg scattering. In addition, the variables of in-
tegration in (4.7) represent the x~ and y~components of the intermediate
radio~wave propagation constant defined in (4.13). The concept of mul-
tiple Bragg scattering adds physical significance to the expressions for
radar cross section and will be helpful in evaluating them and in inter-

preting the results.

C. Integration Techniques

Techniques for evaluating the second-order terms for radar cross
section will be confined to a backscatter grazing-incidence geometry for

the following reasons.
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(a) The radar cross-section expression is algebraically much
simpler; however, there is no loss in generality for the
integration techniques to be developed.

(b) Results obtained from calculated second-order radar cross
section for these conditions have been published [Barrick,
1972].

(c) Available measured data that can be compaved to theoreti~-
cal results (Chapter V) are limited to this radar geometry.

1. Reduction of UVV to Backscatter Grazing Incidence

Equation (4.7) can be reduced to a backscatter grazing-inci-

i ik
.t
v

dence geometry by imposing the following conditions on the angles of in-

% cidence and observation (Fig. 32),
159
1 6 = 90° vy =0
3 g = 180° Q=1
i Ag 2 rcsult of these conditious, Eq. (4.7) becomes

R n,wgwwj'ﬁwwﬂmmm\q: PN

4
Gw(w) = 1618 W(-2B,0) d(n % wB)
g
4 5? 2[B + p)(B - p) - 2b2(p q)]2
+ 1B 2
<o b(p,q) b*(p,q)
1%

2 2

-% K - _JHL“:\ g

+ 8 kl + k2 + sgn(klk2 k1 kz) 1 5 5 1o
n-wB' 12

/
« 3(n + w, *w) W(p - B,q) W(-B - p,-q) dpdq (4.16)
where
El = (p -~ B) 3% + q@y
Ez = (-p - 13) Qx - q&y
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When finite cunductivity is assumed, b(p,q) + BA replaces
b(p,q) as the z-component of the intermediate wave propagation constant
‘Chapter II.E), where A 1is the normalized surface impedance. Because
PA 1is small compared to b(p,q), except for b(p,q) near zero, this
roeplacement can be omitted except when b(p,q) appears as adenominator;
omlssion of 34 in the denominator of (4.16) causes a singularity when
b(p,q) = 0. From Chapter II, ' |

/2 2 2 2 2
B =-p -4q B > p2 +q

D

.

b(p,q) =

42 2 2 2 2 2
-1 +q9 -8B B <p +4q

whic, comobined with the definiticas of k., and kz,

1
_— 5
lJil "Ry * ﬁé'

for b(p,q) b*(p,q) in tre denominator of (4.16). Consistency with the

yields

definition of b(p,q) requires the negative solution for negative argu-
ments of the radical.

Ia the numerator of (4.16), where (A can be neglected,

]
x1

2
b~ (p,q) 1 ° Ky

Bp+p=-k
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and the entire integrand can be written in terms of the ocean~wave prop-

agation constants kl,k2 as

=) — - 12

4 . 4 J]' k Koy - 2k, - Xk
ovv(w) = 167B W(~-28,0) &5(n * QB) « 7B

=% Hk1 . Ez + BA|
N—_ g’

JEm
2 2
-k, - -2 ) .8
+4lk, +ky + sgn(k1k2 ky K,) |1 5 5 | oo
n - W 12
B
Tn
. tw * k k
5(n * w * w,)) W) W(k,) dpdq (4.17)

vhere FEM and FH denote the contributions to radar cross section
from second-order electromagnetic and hydrodynamic theory, respectively.
This equation is similar to the one presented by Barrick (1972). The
difference in the two occurs in the relationship between T and FH.

EM
Instead of writing

P
ZPEM + 8r

9
<~ I 3]

as in (4.17), Barrick combined PEM and I, as

4|r

2
—_— 1rH|

where, for PEM’ the absolute-value signs are dropped.

Except for the multiplicative constants, the difference be-
tween the two forms corresponds to the difference between incoherent and
coherent addition of scattered fields. The first, representing incoher-~
ent addition, comes directly from the mathematical derivation; the sec-
ond can be argued from the contention that, although individual first-
order ocean-wave trains may be uncorrslated, second-order wave trains
are related to the first-order waves that generate them. Consequently,

7 '

136




the first-order fields scattered by the second-order ocean waves (PH)
should be correlated to the second-order fields scattered by the gener-
ating first-order ocean waves (PEM). The correct form is difficult to
determine; perhaps partially coherent addition best represents the ac-
tual scattering process. Incoherent addition, however, will be retained
here although either form is equally suitable for the discussion of the
integration techniques to follow. In Chapter V, cross sections based on
both will be compared to measured data.

The difference in the multiplicative constants or relative
weighting between FEM and PH would be best determined by a detailed
comparison of the derivations. A derivation of the second form is not
available, however, and the comparisons in Chapter V will be relied on
to help resolve this discrepancy.

Thus far, care has been taken to avoid the singularity in PEM
by introducing a finite surface impedance. There are, however, singu-

larities in FH that have not been discussed, and these occur when 0=

wB, wl =0, or w2 = 0. Actually, when wl = 0,
w2=wB=‘q

and when W, = 0,
w1=wB='q

so that a singularity occurs only at 1 = wB. It will be seen, however,
in Section C.4 that, because of the low~frequency cutoff of first-order
ocean-wave height spectra, there is no contribution to second-order

cross section at the first-order Bragg frequency wB.

2, Change in Variables of Integration

One of the integrations required to evaluate (4.17) can be
carried -t analytically with the aid of the delta function,

s(n s ~/;~/(p - vt ~/g'\/(p + B2 4+ )
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For example, the integration over q ¢an be eliminated by integrating
over p and evaluating the 1ntegrandTL at values of q for which

nt ~/g~/(p - B>2 + q2 £ ~/g~/(p + 8)2 + q2 =0 (4.18)

The analytical solution to this equation, however, is not readily appar-
ent and, if numerical techniques are employed to integrate (4.17), éhis
expression must be solved for each value of the variable of integration.
The complexity of evaluating these roots can be avoided if variables can
be found that permit an analytical solution. Rewriting the delta-func-~

tion argument as

+ +
nt gk *, ek, (4.19)

reveals that the use of k1 and k2 or [gkl and JEkz as variables
provides a simple solution for the argument zeros. If k1 is to be the
remaining variable, integration over k, can be performed by evaluating

the integrand of (4.17) at

2

k

(n * Jgk;)°
2~ &g

Because the signs of p and q are formally lost in the definition of
k., and k

1 2’
integration; these regions are discussed in Sections 3, 4, and 5.

care must be exercised in selecting the proper regions of

The formal change of variables requires a Jacobian for the

transformation of p and q to k, and k defined by

1 2’

dp dgq = Jdkldk2

*Because of the form of the arguments in the delta function, the inte-~
grand in (4.17) must be multiplied by the inversec of the derivative of
(4.18) with respect to gq. This additional term is explained in more
detail later in this section.
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where
dp
ol
J =
dq '9q
% X,

The inverse Jacobian J-'1 can be determined from the definitions of k1
and k2 and, when it exists, the Jacobian can be found from the rela-
1 .

tionship JJ = = 1. In this case,

k k
12
J = 2Tl B (4.20a)

The sampling property of the delta function, expressed mathe-
matically as

j F(x) 5(x) dx = F(0)

~~00

provides another Jacobian. f, instead of x, the argument of thedelta

function is some functior of x [such as f£(x)], then

J. F(x) dl£(x)] dx # F(xb)

=00

where f(xo) = 0., By changing the variable from x to f(x),

® ® 5 £(x) Fx,)
J F(x) 5[£(x)] dx = j F(x) -rf-;(—x—)-" di(x) = m
-0 -00 L8]

where the modulus sign allows for the property ©6(-x) = 6(x). For
(4.19), the delta-function Jacobian is
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1 [
Jg = |f*(k2)[ = 2'j1; (4.20b)
With the above Jacobians included, integration over k2 with

the aid of the delta function reduces (4.17) to the single integral

(2) 4 (P2 = = 2 - —
Oyy (M) = nB J:m [ZI’EM(kl,kzo) + SPH(kl,kzo)]

IN
jor] K=

- — klk 20
. W(kl) W(k20) . Tq—l f—-g—- dk1 . (4.21)
where
+ + =
nE Jgky * By = O
2
koo = (n i,fgkl) /g

The vector Eéo can be derived from the definitions of k and kz
evaluated at k and k

-t

1 20’
2 2 2
ki =(-p) +4q
2 2 2
k20=(p+6) +q

Solving for p and q yields

2
-k
p"‘ 48
and
2
2 2
e (130 - 57
q=— 2 -B— 2
168
Then, from the definition of Eé in (4.16),
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Both positive and negative values of ¢q must be included in the evalua-
tion of (4.21) because the original integral sparned the region -w<q<ow;
therefore, the integration must be performed twice, once for 1 and

once for -q.

3. Integration Regions

The region of integration fur the untransformed expression
(4.17) is the entire p,q-plane divided into regions of freely propagat-
ing and evanescent intermediate waves by the circle b(p,q) =0, as il-
lustrated in Fig. 34. When b{(p,q) 1is real, the phase factor -ib(p,q)
is imaginary and the intermediate wave is a freely propagating wave.
When b(p,q) is imaginary, the phase factor is real and the intermediate
wave field attenuates exponentislly away £from the surface with a surface
phase velocity greater than that for free-space propagation. The transi-
tion from one region to another is of considerable interest because the

integrands of (4.17) and (4.21) become nearly singular along this circle.

Aa

EVANESCENT
REGION

B

7 7 7 4
PROPAGATING
REGION
b(p,q)=0

Fig. 34. PROPAGATION REGIONS FOR INTER-
MEDIATE RADIO WAVE.
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In evaluating (4.21), it is helpful to view pictorially the
regions of integration in both the p,q-plane and the kl,kz—plane. Fig~-
ure 35 represents the p,q-plane with the loci of constant k1 and kz,
defined by the circles

f 5
k=N - ) + a2

k2 = Nkp + B)2 + q2

superimposed. Unless these circles intersect, no points p and q can

satisfy similtaneougly the definitions of k., and k2. Figure 36 rep-

1
resents the limits of intersection from which the regions of integration

in the kl,kz-plane can be determined. From Fig. 36a,

k, +k, >28 (4.22a)

‘D‘;

Fig. 35. LOCI OF OCEAN-WAVE PROPAGATION CONSTANTS.
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and from Figs. 36b and 36c,

k, <k, +2B (4.22b)

kl < Kz + 2B (4.22c)

These conditions are illustrated in Fig. 37 where the allowable region f
of integration in the kl,kz-plane is shaded. The p,g~-axes indicate that

this region encompasses the entire p,q-~plane.

~ P

E 28 ko

Fig. 37. INTEGRATION REGION IN THE kl,kz—PLANE. The shaded
region contains all values of ocean-wave propagation con-
stants that contribute to the radar cross-section inte-
gral.
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The reglons of propagating and evanescent waves for the inter-
mediate scattered radio wave in the kl,kz-plane can be determined from

the definitions of k., and kz,

1

2 2 2 2
k1=(p -28p +B) +4q

2 2 2 2
k2=(p +28p + B) +4q

Adding these and using the condition

which is the equation for a circle in the kl,kz-plane along which
b(p,q) = 0 (Fig. 38),

2B

PROPAGATING

.
28 ko

Fig. 38. PROPAGATION REGIONS FOR INTERMEDI-
ATE RADIO WAVE.
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4, Integration Contours

Elimination of one of the variables of integration by means of
the delta function has reduced the double integral (4.17) to the contour
integral (4.21), where the relationship (4.18) between kl’ kz, and 7
provides the family of loci, parametric in 17, along which (4.21) is to
be evaluated. Much of the behavior of avv(w) as a function of 1 de-

pends on how these contours traverse the regions of integration.

a. ‘''wo Modes of Integration

The choice of signs in the argument of the delta function
{4.19) provides two distinct families of integration countours. According
to the double Bragg-scattering concept, the doppler shift 17 1is caused
by both ocean-wave trains imparting either a positive or negative dop-
pler shift to the radio wave (sum mode) or by one ocean-wave train im-
parting a positive doppler shift while the other imparts z negative dop-~
pler shift (difference mode). Figure 39 illustrates how the two modes

could be visualized. If the signs are the same, the zeros of the delta
function are

Inl = |Jeky + . Jek, |

which is the sum mode and, if they are different, by

In| = |Jeky - ok

vhich is the difference mode.

In the sum mode, both [gkl and gkz must be less than
1 (or equal to 7 1if one of the radical terms is zero) for zeros of the
delta function to exist. In the difference mode, however, both radical
terms can be large as long as their difference is less than 1.

For positive values of 1, the sum-mode contours are

k

(n —,{gkl)z
25T &

n > ek,
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Fig. 39. DOPPLER SHIFTS FROM TWO OCEAN WAVES. Two ocean
waves can impart doppler shifts of either the same sign
(sum mode) or of different signs (difference mode). The
total shift can be positive or negative for either mode,
depending on the directions and relative magnitudes of

k1 and k2 .

These contours, which also represent negative values of 1, are plotted

in Fig. 40. Similar contours of integration for the difference mode come

from °
.2
(n + gk, )
k2 = _E——- k2 > k1
or
2
(n +  &k,)
kl = p —— k1 > k2

The difference-mode contours (Fig. 41) are doubie valued.
The contour to be used in the integration for a particular value of 1
depends on the relative magnitude of kl and kz' For example, if 1
is positive, with one ocean-wave train providing a positive doppler shift
and the other providing a negative doppler shift, then

N = Jeky - ek,
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{ Fig. 40. SUM-MODE INTEGRATION CONTOURS.

and k1 mist always be greater than kz. If 1 1is negative, k2 must
¢ be greater than kl' If the sign of the doppler shift from each of the
wave trains is reversed, k2 > k1 implies positive 1 and k1 > k2

implies negative 1.

A comparison of the sum- and difference-mode contours in

Figs. 40 and 41 indicates that scattered radio waves with doppler shifts

ey e b 7

greater than QB occur in the sum mode only and that doppler shifts less

than QB result from difference-mode scattering. This modal separation

can be shown mathematically from the conditions stated in (4.22) and pro-

¢ vides a convenient means by which to distinguish the sum- and differeace-
3 " )
: mode regions in plots of 053 (n).f

2
¢ foév)(n) cmphasizes the dependence of radar cross section on doppler
- shift and replaces the notetion 06%)(m). The superscript denotes scc-
ond order. !
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Fig. 41. DIFFERENCE-MODE INTEGRATION CONTOURS.

In either mode, the contours for 1 = wB cross the inte-

gration region only at points (2B,0) or (0,28) in the kl,kz-plane.
Because neither kl nor k2 can be zero for real ocean waves, there is
no second-order contribution to radar cross section at the first-order

Bragg line; in fact, ocean-wave spectra have cutoffs well above k =0
\

(Chapter I111.C), and no second-order cqntribution is expected near the

first-order Bragg line.

¢ b. Relationship between Integration Contours and 063)(“)

In this section, individual integration contours will be
examined to determine how they are related to particular features of a

typical plot of va(n). ¥here applicable, these features will also be
explained in terms of double Bragg scattering.
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Figure 42 is a plot of qvv(n) obtained by integrating
(4.21) with a Munk wave-height spectrum (Table 1) at a wind speed of 30

knots (friction velocity = 0.725 m/sec). Figure 43 shows the relation-
ship between wind direction and radio-wave propagation directions. The

radar transmjitter frequency is 10 MHz.

oyy (M- wg

1074
b

FIRST - ORDER
BRAGG-L INES

{

-

102 4

107

107

I |

}
I
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i
I
|
I
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!
f
!

|
-SUM MODE DIFFERENCE MODE +SuM MODE
]

-y P .‘.lA .
- et i p——_

[}
4 .
-2 -1 0 | /3 24 2
NORMALIZED DOPPLER SHFT n/wg

Fig. 42. TYPICAL PLOT OF INCREMENTAL RADAR CROSS SECTION FOR A
MUNK WAVE~HEIGHT SPECTRUM. Wind = 30 kncts at 135° with re-
spect to the radar direction (Fig. 43). Radar frequency = 10
MHz. First~order Bragg-line height is proportional to power
rather than to power spectral density.
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®- RADAR DIRECTION
RADAR
SCATTERING
AREA
Fig. 43. RADAR-WIND GEOMETRY.
The features to be correlated with the integration con-~
tours are the spikes in Fig. 42 occurring at 17 = N2 uh and 23/4 wh.

These peaks result when the integration contours traverse regions where
the integrand becomes large or nearly singular. For example, the inte-

grand in (4.17) is nearly singular when
k, -k, =0 (4.23)

if the normalized surface impedance A is small. Condition (4.23) de-
fines the transition line from propagating to evanescent intermediate
radio waves illustrated in Fig. 38, and integration contours approach-
ing this line can be expected to cause high values of 063)(n). The
difference~mode contours (Fig. 41) all cross this line; however, they
cross almost orthogonally so that the transition-line contribution to
the integral should be small compared to the total contribution. Al-
though the overall level of cé:)(n) in the difference region should
be higher than in the regions where the contours do not approach the

transition line (sum mode for 1 > 23/4

wB), there should be no dis-
tinguishable features for any single value of 1, as indicated in Fig. 42,
In the sum mode, many of the contours do not cross the
transition line (Fig. 40) but, for those that do, d‘(n?;) §i)) shogiz be
higher (this is verified by Fig. 42). In particular, when n=2 W,
the integration contour is tangcnt to the transition line and a large
integrand exists over a substantial part of the contour, thereby creat-

ing a spike at this frequency.
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In terms of multiple scattering, the transiition line de-
termined by (4.23) corresponds to ocean-wave trains traveling in ortho-
gonal directions (Ei oEé = 0) and produces a corner re’lector effect

(Fig. 44)'f where radio waves incident on either wave train produce back-

scatter. The direction of the ocean-wave propagation vectors can be such
that either the sum or difference mode exists. The lack of a definite

3

2 /4 w_, 1is the result of the wave-height directional

B
spectrum and wind direction selected. Figures 43 and 44 show that one

DIPTE DT o o Sl & ol A

: spike at 1 = -

of the wave trains forming the corner reflector propagates along the
line defining the wind direction. For positive doppler shifts, this

: ¢ wave train must have a component of propagation toward the radar (see
Section C.5) and must, therefore, propagate in the wind direction; how-
ever, for negative doppler shifts, this wave train propagates directly
against the wind where the Munk spectrum has zero amplitude when € =0

1

k"k 2 =0

T
)

o

Fig. 44. CORNER REFLECTOR.

~

TWhen the intermediate wave propagates on the surface with propagation

constant B (this occurs on the transition line), the incident, re-~
flected, and intermediate radio rays are coplanar for the backscatter
geometry chosen and Snell's law implied by Fig. 44 is applicable. Gen-
-4 erally, when the intermediate wave has a vertical component of propaga-
tion or is an evanescent wave, such a simple picture cannot be drawn.
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and only small amplitude when ¢ 1is finite. At the point where the

sum-mode contour is tangent to the transition line (Fig. 40), k1 = k2

and p = 0. As a result,

1/2 1/2
n= t[Jg (262) + Jg (262) ]: +23/4 Wy

indicating that the tangent sum-mode contour does indeed correspond to

the 23/4 ub spike shown in Fig. 42.

The integrand in Eq. (4.17) reveals no obvious singular-
ities at 7 = VEwB. Although the transformation Jacobian (4.20) is un-
defined at q = 0 and, hence, the transformed version (4.21) of Eq.
(4.17) appears to have a singularity along the entire p-axis which bounds

the region of integration in the kl,kz—blane, it will be shown in Appen-’

dix A that this is an integrable singularity except when p = B and
q = 0; in this case, the integrand is already singular because T|=hh.
Because no obvious singularities create the VE.wB spike,
a plot of the integrand will be examined for a clue. Figures 45a and 45b
illustrate the sum- and difference-mode integrands in Eq. (4.17) with the
delta function and spectral terms excluded, and Fig. 45c indicaztes the
paths along which the integrands were calculated. The sum-mode integrand
becomes quite large near the portion of the p-axis that lies on the k1-+
k2 = 28 1line, particularly at n = N2 QB vhere the integration contour
is tangent to this segment of the p-axis. The greatest integrand con-
1= kz = B, and
k., and k_ are aligned with the radar direction (x-axis in Fig. 32).

1 2

1f El and ﬁz are in the same direction, they represent a single wave

train with k = B (this is the Bragg condition for n = 2; see Section

tribution to this spike occurs at the p,q-origin where k

B). Because the phase velocity of an ocean wave is +g/k, the phase
velocity of an ocean wave with k = f 1is N2 times greater than that
of a wave train causing first-order Bragg scattering (k = 2B).

Figure 46 illustrates what happens in terms of multiple
scattering. With p and q both zero, the intermediate radio wave
propagates along the z-axis and, although it propagates away from the
ocean surface, the fields associated with this radio wave interact with
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Fig. 45. SECOND-ORDER RADAR CROSS-SECTION INTEGRANDS. Sum- and
difference~-mode integrands are calculated along the line k6 =k, +
A : B 43 (c), where A varies from O to 1.8. Integrands exclude the
delta function and spectral terms in Eq.(4.17).
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Fig. 46. MULTIPLE BRAGG SCATTERING |
FOR ki = ky = B. Incident radio ;
waves are scattered away from the .
surface by wave train 1. The sec- I
ond wave train scatters the inter- §
mediate radio wave back along the
surface.

the second ocean-wave train in such a manner as to produce the backscat-
tered radio wave shown. Note that both the sum~- and difference-mode in-

tegrands continue to increase as k., and k increase; whereas, Fig.

1 2
42 shows that, as these constants increase, the sum-mode total integral

decreases. This is the result of the spectral terms (excluded from the
integrand calculations) decreasing at the rate of k-4 (see Table 1),

5. Doppler Shift as a Function of Ocean-Wave Direction

The choice of signs in the delta function in Eq. (4.17) deter-
mines which contours (sum or difference mode) are to be used in evaluat-
ing o( )(n), however, the criterion for selecting those signs has not
been established. thther a given wave train causes a positive or nega-
tive doppler shift in a radar signal will depend on the direction of

ocec~n-wave propagation.
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The relationship between doppler shift and ocean-wave direc-
tion can be found by considering what happens when a radar signal with
propagation constant Ei impinges on an ocean wave traveling with ve-
locity v (Fig. 47). An observer traveling with the wave will see the
radar signal doppler shifted by an amount

To first order ,+ a stationary observer at point O will see a doppler
shift (relative to the frequency noted by the observer moving with the

wave) of
“a2 = Br "V
O STATIONARY
\ OBSERVER
B, 3
VELOCITY v
B
WAVE
TRAIN
Fig. 47. SINGLE~SCATTER DOPPLER~SHIFT
GEOMETRY.
1-

First order denotes that Er is taken as mo/c rather than the more
exact (W, +Wy1)/c, where W, is the transmitted frequency and c is
the velocity of radio-wave propagation. This simplification was also
assumed in Chapter II for the derivations that led to Fq. (4.17).
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As a result, the total doppler shift imparted to the incident signal by

5 the ocean wave is
? ®
; W, = wdl + wd2 =V (Br - Bi) (4.24)
5: Vhen the dispersion relationship (3.24) replaces v with a function of
i ¢ the ocean-wave propagation constant E, the total doppler shift becomes
B
: = EX2. (B -8B
' N T (Br Bi) (4.25)
The doppler shifts imparted by the two ocean-wave trains asso-
:
z ciated with (4.17) or (4.21) can now be calculated directly from (4.25).
From Fig. 48, the radio~ and ocean-wave propagation vectors for the first
] & wave train are
Y, N — ~
: = 4.2
; Bi Bax (4.26a)
3
SR - A~ A
By =pPd, +ad  +rd (4.26b)
- A A
= - .2
ky (p - B) a, +ad (4.26¢)
&
) and the doppler shift according to (4.25) is positive with a magnitude
E of
B
g’ 2K w, = [gk
'g“ $ 1 1
9 3 For the second wave train,
H
E & —61 = pd_ +qd_ + rﬁz (4.27a)
74 % '
i - - - ~
E B, = -Fa_ (4.27p)
> - ~ A
s k2 = (~-p - B) a_ - qay (4.27¢)
E 4
g 157
=

IR
L

3




25

VAR

w = RS R
S R BT “?7‘%"*’%&%%@%
PET IS mﬂ"mwnowwWWi - -
o

&

K =-(p+B)8, —ad,

Bro=-B8,

WAVE TRAIN 2

Bri *Biz = Py +qa, +rd,

WAVE TRAIN |
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Fig. 48. RELATIONSHIP BETWEEN RADIO-WAVE AND OCEAN-WAVE
PROPAGATION VECTORS.

and, again, the doppler shift is positive, but with a magnitude of

wszgI(—z

The corresponding delta function in ( .17) for the ocean waves
defined by (4.26c) and (4.27c¢) is

8(n - W - w2)

To obtain delta functions representing the negative sum mode or the dif-
ference modes requires expansion of the definitions of Ei and Eé to
include ikl and *k,. The restrictions cn k, and k, in (4.26¢)
and (4.27¢c) are a conseguence of the fact that the scattering geometry
(Fig. 48} is independent of wave direction. Expandihg these definitions
docs not change the orientation of the wave trains but simply specifies

their direction of propagation. The equations for radar cross section

yield (4.26¢) and (4.27c) rather than the negative counterparts because
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positive directions of ocean-wave propagation were assumed in their der-
ivation. The integral in (4.21) must be evaluated four times, once for
each possible directional combination of 'k, and k

1 2
cross section is to be completely determined.

if second-order

An interesting result of Eq. (4.25) is that ocean waves that
appear to provide a particular sign for wl or wz do not. For exan-
ple, an ocean wave with a velocity component in the negative x-direction
(Fig. 47) could be ekpected to impart a positive doppler shift to a radar
signal traveling in the positive x-direction. To verify that this does
not necessarily occur, consider an ocean wave with the propagation vec~

tor

N

k = ~(p - B) & - qay

and a radio wave with propagation components (Fig. 48),

~

B, = Ba
T =pa +qa_ +ra
Pp T PR+ G y z

Equation (4.25) shows that these propagation vectors result in a negative
doppler shift; however, kx can be negative (kx negative was expected
to provide a positive doppler shift) if p is positive and larger than
the radio-wave propagation constant f. Under certain conditions, then,
an ocean wave with a velocity component in the direction of the radarmay

provide a negative doppler shift; this condition is p > B. Because

2 2 2 2
B" - p“ -q" =17 (p,q)

b(p,q) 1is imaginary and the reflected wave is evanescent.

Because the evanescent region must be included in the integra-
tion of (4.17) or (4.21), the signs of W, and w, must be based on Eq.
(4.25). Barrick (1972) apparently used only the sign of the x-component

of the ocean-~wave propagation constant as the criterion for selecting

159



these signs in the delta function, in disagreement with the conclusior

here.

6. Integration Linits

Ostensibly, the integration limits for (4.21) are from zero
to infinity; however, the integration contours (Figs. 40 and 41) cross
the integration region boundaries within these outer limits. Actual
limits are obtained from the intersection of the contours with the re-
gion Loundaries. These intersection points are shown in Fig. 49 for

both sum~ and difference-mode contours.

a. Sum mode b. Difference mode

Fig. 49. INTEGRATION LIMITS.

Point (a) for the sum mode is the intersection of the boundary

k, =k, + 2B . (4.28)

with the contour

(q - gkl)2
k. =

2 - (4.29)
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The value of the variable of integration k
solving (4.28) and (4.29),

1 at this point is found by

(4.30)

Similarly, the intersection of the sum-mode contour (4.29) with the

e i boundary

provides the value of k

1 at point (b),

( 2 2 2
wB + 7 >
k, (b) = ——p—m (4.31)
1 2
4ng
For 1 < VE'wB, this coutour also intersects the boundary
k, +k, = 2B (4.32)

Combining (4.29) and (4.32) results in a quadratic expression for k

1
whose two golutions correspond to points (c) and (d),
w: -1 /2u§ - n2
kl(c) = pr (4.334)
2 2 2
Wg + M 2wB -7
kl(d) = 7 (4.33b)

The difference-mode contours

(1 + gk,
k2 = .

ie61
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kl(e) = (4.34a)
i
’i w]23+n/2w123-q2
: kl(f) = e (4.34b)
; 2 2\2
(wB - )
SRR kl(g) = (4.34¢)
:‘ z s 4n g
! 2 2\2
X (6 +
b ky () = 2 (4.34d)
i g
3 Derivation of these iimits completes the prerequisites for evaluating
4 (2)
18 . 4n .
3 Oy (1) by Eq. (4.21)
it
s {
R

D. Numerical Methods and Results

Several examples of calculated incremental radar cross section per
unit frequency as a functior of doppler shift are presented in this sec-
tion. These examples show variations of O’W(T]) with wind speed and
direction for the first-order wave-height spectral models described in
Chapter III (Table 1). Power in the second-order sidebands is calcu~

e PP T Y I TR T R
*

lated and compared to first-order, or Bragg~-line, power in an attempt

to find methods for predicting wind speed and direction from radar mea-
surements. Attention is restricted to ow(n)

AL LMY,

because, for grazing
incidence and observation, only vertically polarized radar echoes are
obsered.
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1, Integration Methods

[ ] Numerical techniques are utilized to evaluate (4.21) for
06‘2,) (7). The integration region (Fig. 37) is subdivided into three
smaller regions (Fig. 50) so as to isolate the circle b(p,q) =0 vhere

ig
]
%
4
L

<oren s

the integrand of (4.21) is nearly
z singular. In the annulus {ragion
i 2), the integrand is evaluated at k"

REGION 3

finer increments than is required
in region 1 or 3. The lengths of

& the radii Rl and Rz, definaing 23 REGION 2

region 2, are notcritical and wers
set at 1.88 and 2.28 for conve~

nience. Simpson's rule for numer- REGION |

- t ical integration [Herriot, 1963, —

4 pp. 25-29] was used to obtain the 2B ko

; results presented. - -
The number of points re- #ig. 50. SUBREGIONS OF INTEGRATION.
‘ " quired by Simpson's method in re-

gion 2 depends on the steepness of the integrand slope near b(p,q) =0

which, in turn, depends on tie value chosen for the normalized surface
impedance A. Barrick (1971) has calculated values of A as a function
of wind speed for several first-order wave-height spectral models. Fig-

S

ure 51 presents surface impedances based on a Phillips (Table 1) iso-
tropic spectrum. For directional spectrum models, A is a function of
wind direction as well as wind speed for a given radio frequency [Bar-
{ rick, 1971].
3/4
Except when 1 = 2 Wa s
the evaluation cf (4.21) is not critical. In the difterence mode, wiere

the exact value selected for A in

integration contours cross b(p,q) = 0 almost orthogonally (Fig. 41),

2
' the contribution to Uév)

to the total value of the integral. In the sum mode (Fig. 40), contri-

R R IR

(n) from region 2 is relatively small compared

butions from region 2 are again small (although not as small as those in

the difference mode) except when the integretion contours are nearly tan-

Rty § Wt SR L i SO Wl Patollgl Bttt i S T s A i A ke ‘WWW%WWWW POEERG
An gerregm

S gent to b(p,q} = 0. It can be observed in ,:< 42 that the power (are:
) 3/4

: under the curve) in the received radar sigral n=2 / Wy is also
? 162
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Fig. 51. EFFECTIVE SURFACE IMPEDANCE. Calculated nor-
malized effective surface impedance A 1is based on a
L. Phillips isotropic wave-height spectrum.
small compared to the total received power; therefore, unless a precise
. value cof 063)(n) is required at n = 23"4 wB, values of A larger
than those indicated in Fig. 51 can be chosen with little effect on
cés)(n). To reduce the number of points at which the integrand in (4.21)
must be evaluated in region 2, a value of A = 0.05 + i1 0.05 was set for
, all computations presented here.
2. Calculated Values of cvvgnl
{ Figure 52 is a plot of va(n) - Wy Vs n/qB for a Phillips
semi~-isotropic wave-height spectrum. The wind speed is 30 knots, and the
: directions (Fig. 53) are crosswind and upwind, corresponding to Gw:=90°
. and ew = 180°, respectively. The value of the equ.librium range con-
L stant is Be = 0.01 and will be maintained throughnut. Swell has been
o neglected in the calculations leading to Fig. 52 and in most of the re-
sults presented here, except where noted. The radar frequency is 10 MHz.
The first-order contributions to incremental radar cross sec-
' s tion per unit fre- iency are represented by delta functions in frequency

[Eq. (4.21)]. 1hese Bragg lines are shown in Fig. 52; however, the
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Fig. 52, RADAR CROSS SECTION FOR A PHILLIPS SEMI-
ISOTROPIC WAVE-HEIGHT SPECTRUM. Wind speed = 30
knots; radar frequency = 10 MHz.

height of the lines deunotes the power in the first-order radar echo
o

GVV , Wwhere .

o _ (7
ow-J(; Uw(’])d"]

for the positive Bragg line, and
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for the negative Bragg line. The first-order contribution to (4.21) is

Uét)(n) (see Appendix B).

WIND DIRECTION

e 3 R
LR P I TR P el

P .
& v » RADAR POINTING
— - D!RECTION
RADAR UPWIND DOWNWIND
. CROSSWIND
. ¥
. Fig. 53. WIND DIKECTIONS.
? i Figure 52 also exhibits the characteristic spikes at n==iNﬁub
§ and 1N = 123/4 ub that appeared in the radar cross section of the Munk
spectrum (Fig. 42). These spikes were considered in some detail in Sec-~
tion C.4.b.
&

A feature characteristic of all semi-isotropic spectra is their

lack of radar cross section in certain regions of doppler shift 1. There

€AY AR A g e

is no sum-mode cross section in the crosswind direction, and scattered

power has only a positive or negative doppler shift in the upwind or

downwind directions, respectively. This feature can be explained by ap~
plying the double Bragg-scattering concept to a wave-height spectrum that
is nonzero only on a half-plane (Fig. 20).

The sharp cutoffs in radar cross section near the Bragg lines
in Fig. 52 result when the wave-height spectr is limited to waves trav-
eling slower than the wind. In the differenc2--wde region of positive
doppler snift, the maximum value nmax at vhich Ués)(n) is nonzero
occurs when one ocean~-wave train in a double Bragg-scattering process
produces the maximum possible doppler shift w and the second pro-

Imax
duces the minimum possible doppler shift ubmin; that is,
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nmax = wlmax - mein

or
nmax = dh‘lmax - kaZmin
2
Because of the wave-speed limitation, kZmin = g/Cmax vhere
Cmax is the wave speed equal to wind speed. From Fig. 36,
k1 - k2 <2
therefore,
= = - S
k1max 26 + kZmin 2g + C2
max
and
2 —£_
= 2 - .
T .59
C max
max

In the sum-mode region of positive doppler shift, a similar argument

leads to

2
= --£ . £
Mnin AZBg 02 + Cmax (4.36)
max

These last two equations represent the values of doppler shift at which
the second-order contribution to radar cross section near the Bragg
lines becomes zero. For the examples in Fig. 52, Thax = 10.73ub in
the difference mode and Toin = i1.26wB in the sum mode. These expres-
sions are valid when the wave~-height spectrum cutoff is determined solely
by Cmax’ whatever the relationship between wind speed and maximum wave
speed.

A sonewhat more realistic description of incremental radar

cross section is plotted in Fig. 54 where a Munk wave-height spectrum
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NORMALIZED DOPPLER SHIFT 7/wg

30 knots measured at 6.4 m, radar frequency=10

RADAR CROSS SECTION FOR A MUNK WAVE-HEIGHT SPECTRUM.
Wind speed =

MHz,

Fig. 54.

e =0,
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(Table 1) has been assumed. In this spectrum, ocean waves are allowed

to propagate in all directions; as a result, there are sum-~ and differ-
L ence~mode contributions to second-order ra%ar cross sections at positive

and negative doppler shifts for both crosswind and upwind conditions.

The wind speed of 30 krots is assumed at &an anemometer height of 6.4 m

and corresponds to a friction velocity oi 0.725 m/sec. The constant ¢

s
B B T e e ) o i MR s o Moot 2,

ar ks A R aav

) allows for ocean~wave energy propagating against the wind and 1s zero in
this example; however, Fig. 55 illustrates the effects of finite ¢.
The position of the near-Bragg-line cutoffs for this spectrum

are determined by the u-parameter cutoff Hy which is related to the
E4 i ¢ maximum wave velocity by
- u,
s C!nax='——"
Ho

where K is Karman's constant (=0.41) and u, (Chapter III.C.2) is the
friction velocity defined by Eq. (3.45). For T 0.1, Mnax = iO.76wB
and 1 . = i1.24ub from Eqs. (4.35) and (4.36).

g An example of radar cross section that does not have quite the
sharp near-Bragg-line cutoffs associated with the Phillips and Munk spec-
tra is shown in Fig. 56, vhere a Plerson-Moskowitz amplitude spectrum
with a directional dependence of cos2 (®/2) (Table 1) has been assumed.

. This spectrum provides an exponential wave-height decay for waves travel-
ing faster than the wind (Fig. 19), rather than a sharp transition to

zero wave height, and will be used in most of the remaining discussion

of ovv(n) in this chapter; however, corresponding results obtained
& from the Phillips and Munk spectra are presented in Appendix C.
Variations of va(n) with wind direction are illustrated in
) Fig. 57 for ew = 112,5°, 135°, and 154.5° (Fig. 53). The upwind and
» crosswind values (Gw = 180° and 90°) for ovv(n) are found in Fig.

N D AR R R R R s

%‘: 56. Plots of va(n) for 6 between 180° and 90° also represent
E)
Eog cvv(-n) for 6 from 0° to 90°, respectively. Plots for both negative
) and positive values of Gw are the same.
! As the direction changes from crosswind to upwind, values of
: ¢ ﬂvv(n) Tor positive doppler shifts increase and those for negative
H 169
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Fig. 55. RADAR CROSS SECTION FOR WAVES TRAVELING AGAINST THE
WIND. A Munk wave~height spectrum with wind speed = 30 knots
€ and direction = 135° assumed.
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Fig. 57. VARIATIONS IN RADAR CROSS SECTION WITH WIND DIRECTION.
A Pierson-Moskowitz cosine-squared wave-height spectrumat wind
speed = 30 knots assumed. Radar frequency = 10 MHz.
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shifts become smaller. A similar trend toward negative 1 occurs when
the direction shifts to downwind. Both first- and second-order contri-
butions to va(n) exhibit this wind-direction dependence, suggesting
that either could be used to determine wind direction from radar mea-
surements. This possibility is discussed in the next section.
Variations of ovv(n) with wind speed are plotted in Fig. 58,

where the first-order Bragg lines have been suppressed for clarity. An

increase in wind speed has little effect on ocean waves that are already
saturated ; however, as wind speed increases, the unsaturated lower fre-
quency waves grow in height until equilibrium is reached (Fig. 19 illu-
strates the equilibrium state or wave-helght spectrum for the Pierson-
Moskowitz and Phillips models with wind speeds of 20 and 40 knots).

o™

P
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o yvin) cwy

WIND
SPEED
40 KNOTS

30
] I250
i ‘ s J ry

' -1 0 I '10

NORMALIZED DOPPLER SHIFT 7/wq

P2 P
JoB AN
Al

o

Fig. 58. VARIATIONS IN RADAR CROSS SECTION WITH WIND SPEED. A
Pierson-Moskowitz cosine~-squared wave-height spectrum with wind
direction = 135° assumed. The first-order Bragg 1lines have been
L suppressed for clarity. Radar frequency = 10 MHz.
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Increased wave height appears as an increase in the levei of va(n),
whereas the addition of lower frequency waves tc the wave-height spec-
trum causes the near-Bragg-line cutoffs to move clocer to the Bragg line.
The dependency of cvv(n) on wind speed suggests that such speed might
also be determined from radar measurements. This possibility is alsu
discussed in the next sec*ion.

Second-order ele tromagnetic and hydrodynamic effects have
been included in the calculations of va(n), and Fig. 59 shows the
contribution of each to the total incremental redar cross section. The
hydrodynamic term rh domina;iz, whereas the electromagnetic term PEM
2

“b and in the region near zero doppler

shift. The singularity in TH at n =

influences va(n) at 71 =

wB causes the rather large val-
ues in ovv(n) as 1 approaches the Bragg line. The spike at n::VE wB

occurs in both PE and FH contributions and is a result of the Bragg

condition when n g 2 (Section C.4.b provided further details concern-
ing this spike). The barely discernible discontinuity appearing at n=
—23/4 QB is a consequence of numerically evaluating (4.21) for wave-
height spectra with zero amplitude for waves traveling directly against
the wind. This discontinuity vanishes for finite wave amplitudes (Fig.
55, ¢ = 0.05).

In Section C.1, alternate methods were suggested for combining
PEM and FH in expression (4.21). There was also some controversy con-
cerning the relative weighting of the two terms. Calculations presented
here have been based on the form
’2

2
2| |” + 8|1 |

An alternate form [Barrick, 1971] suggests that fields scattered by sec-
ond-order ocean waves are correlated with second-order filelds scattered

by first-order ocean waves and is given by

2
4|rg, - 1n, ]
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Fig. 59.
CROSS SECTION.

kernels of ZP%M-+8PE, ZF%M, and SFﬁ. A Pierson-Moskowitz

cosine-squared wave~height spectrum with wind speed = 15 knots

ELECTROMAGNETIC AND HYDRODYNAMIC CONTRIBUTIONS TO RADAR
Equation (4.21) has been evaluated for integrand

and direction = 135° assumed. Radar frequency = 10 MHz.

A third form results when the weighting of the first form is combined
with the coherent addition cf the second,

2
Narg, - 1v8r |
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Values of cvv(n) based on each form are presented in Fig. 60. The dif-

ference between coherent and incoherent addition is significant only for
3/4

n>2 wB (the sum-mode evanescent region) because, for freely propa-
gating intermediate radio waves, T, is real if the surface impedance

EM
is neglected and the first and third forms are the same. Differences in

the relative weighting of PEM and FH appear as differences in the
magnitude of ovv(n). Overa’l agreement among the three forms will make

I'OT
ZPEM+ Bl‘f1
"""_'-"\/2- PEM'iﬁf.B- PHF
~ =4Iy Ty |2
o'+

- 0 |
NORMAILIZED DOPPLER SHIFT 7/wg

RADAR CROSS SECTION FOR THREE METHODS FOR COMBINING
A Pierson-Moskow-

Fig. 60.
ELECTROMAGNETIC AND HYDRODYNAMIC EFFECTS.
itz cosine-squared wave-height spectrum with wind speed = 30
knots and direction = 135° assumed.
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difficult a selection based on comparisons of theoretical to measured
values of ovv(n).

Normalization of cvv(n) and 1 by the Bragg frequency Wy
allows a family of cvv(n) curves to be represented by a single plot.
It is not difficult to show that values of ovv(n/wB) *w, are c;nstant
for all wind speeds u and radar frequencies £, such that fu is
constant (fui for the Munk spectrum). The contours of fu2 and fui
(Fig. 61) can be used to relate the curves of cvv(n) presented here

and in Appendix C to various conditions of wind speed and radar frequency.

3. Estimators for Wind Speed and Direction

Plots of Uw('q) in the above section varied with wind speed
and direction, suggesting thet wind conditions might be obtained from

100
®
°
£
3
a
]
W
Q.
7]
Q ~—0.40!
Z 0.256
=
2
ful=CONSTANT
| | L. f L1l T, WEES V1]
| 2 345 10 20 50 | 2 345 10 20 50
FREQUENCY, f (MMz) FREQUENCY, £ (MMz)
a. Pnillips and Pierson-Moskow- b. Munk spectrum
itz spectra

Fig. 61. PARAMETERIZATION OF RADAR CROSS SECTION. A single plot of
normalized radar cross section o(n) + @, vs normalized doppler shift
n/wg describes all cross sections, such that fu? (fuf for the Munk
spectrum) is a constant. Cross sections described by contours below
the cutoffs contain no first-order Bragg lines. For the Munk spectrum,
wind speed u 1is assumed at a height of 6.4 m.
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radar measurements. In this section, various parameters derived from
cw(n) are examined to determine which, if any, are suitable for pre~
dicting these conditiomns.

As a starting point, consider the ratio of positive~to-unega-
tive Bragg-line power as a function of wind direction (Fig. 62). This
ratio is independent of wind speed* for the Pierson-Moskowitz amplitude
spectrum with a cosz (8/2) directional dependence. For the Munk spec-
trum, however, it is a function of both wind direction and speed because,
although the first-ovder Bragg-scattering waves are saturated, the spread
factor s, which determines the directional dependence of this spectrum,
is a function of wind speed [Eq. (3.50)].

Estimation of wind direction for the spectrum in Fig. 62a is
straightforward because each Bragg-line ratio corresponds to a unique

40 r 40~ WIND
SPEED
- ™ 15 knots

&
l
3
l

0

/e
/

1 ] 1 1 13

- ALL WIND
SPEEDS

BRAGG LINE RATIO (dB)
s 8
T T

BRAGG LINE RATIO (dB)
S
&

L

1

ol | U S R S B | J 0 1
100 120 140 60 180 100 120 140 160 180
WIND DIRECTION (deg) WIND DIRECTION (deg)
a. Plerson-Moskowitz spectrum-- b. Munk spectrum
cos? (8/2) directional de-
pendence

Fig. 62, BRAGG-LINE RATIO VS WIND SPEED AND DIRECTION.

*Waves responsible for first-order Bragg scatter are saturated for wind
speeds greater than =09.J knots when the radar frequency is 10 MHz. Only
wind speeds of 10 knots or greater are considered here.
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direc‘l:.*.cn{r however, if the Munk spectrum provides a better model for
ocean~wave height, wind speed must be known so as to obtain wind direc-
tion from the Bragg-line ratios. A plot of these ratios for the Phil-
lips semi-isotropic spectrum has been omitted because both positive and
negative Bragg lines do not exist simulfaneously and the amplitude of
the existing line is independent of wind direction and speed.

A possible parameter for estimating wind direction from sec-
ond-order incremental radar cross sectiors is illustrated in Fig. 63,
where the ratio of power with positive doppler shift to that with nega-
tive shift

® (@)
J(; Oyy (n) dn

0
L” ox) (n) dn

is plotted as a function of wind direction. For both spectra, this ra-
tio is a function of wind speed and direction; thereifora, an estimate of
wind direction requires knowledge of wind speed. This rutio is finite,
however, for all wind directions including up- and downwind--an advan-
tage over the Bragg-line ratio when only a single radar-pointing direc-
tion is available. In addition, Bragg—lihe power is scrttered by ocean
waves of a single frequency that may not be indicative of tae overall
wind-generated surface spectrum at any given time; conversely, second-
order power is derived from the entire surface-height spectrum and is
less susceptible to single~frequency anomalies.

Comparison of the plots in Fig.A63 indicates that the vecond-
order power ratio increases with wind speed near upwind conditions for
the Pierson-Moskowitz cos2 (6/2) spectrum but decreases for the Munk
spectrum (the same is true of the power-ratio magnitude for downwind
conditions). Such dependence of received power on a spectral model il-

lustrates the requirement for an accurate description of directional

TA mirror-image ambiguity exists about the radar line and can ber.:anlved
by using more than one radar-pointing direction.
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wave-height spectra before wind direction caﬂ be estimated from second-~
order power ratios; it also provides a means for selecting or eliminat-~
ing proposed models and indicates which meéasurements are significant for
this purpose.

A possible method for wind-speed estimation considers total
second~-order power compared to total Bragg-line power,

) f 0(2) () dq

-00

j{;m o‘(nl,) (1) dn

(4.37)

Ratios are used because absolute power measurements are difficuit to ob-
tain. Total Bragg-~line power is nearly invariant with changes of wind
speed and direction (see Appendix B) as long as ocean waves of frequency
wB remain saturated and, therefore, provides a convenient reference for
second-order power. Figure 64 presents (4.37) as a function of wind speed
and direction for the Phillips semi-isotropic, Munk, and Pierson-Moskow-
itz cos2 (®©/2) spectra.

Second-order power exhibits some wind-direction dependence for
each spectrum; however, variations with wind speed are large enough to
be able to estimate wind speed, in most cases, without knowledge of di~-
rection, If an omnidire~tional radar antenna is employed, received power
is independent of wind direction and wind speed can be estimated from the
average values shown.

The above ratios are only examples based on model .wave*height
spectra. The performance of these methods depends on how well the models
describe actual first-order ocean surfaces. The examples can be extended
to radar frequencies other than 10 MHz with the aid of the graphs in Fig.

61.

4, Effects of Swell

Rather sharp spikes occur at discrete doppler fregrencies in

plots of (n) vs 1 when Eq. (4.21) is evaluated, with the model of

o]
Vv
ocean-wav® swell (Chapter iIl.D) included. Figure 65 is an example in
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Fig. 65. RADAR CROSS SECTION WITH SWELL. The four sharp spikes
are the result of swell at a frequency wg and a direction of
45° (Fig. 53) interacting with local seas represented by a
Pierson~Moskowitz cosine-squared wave-height spectrum. Wind =
30 knots at 135°,

vhich the Pierson-Moskowitz cos2 (8/2) model represents the local wind-

generated portion of the first-order spectrum. Generally, four swell-in-
duced spikes exist at doppler frequencies that are related to the direction
of arrival and frequency of the swell; however, under special conditions,
a fifth spike may occur at 1 = VE-wB' Power contained in these spikes
is a function of swell wave height as well as speed and direction of the
local winds.
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The relationship between swell and the resultant spilkes in
cvv(n) can be determined by considering the spectral term W(klx’kly)x
W(kzx'kzy) in (4.21) with swell included,

W(klx,kly) W(k2x,k2y) = [ww(p - B,q) + Ws(p - B,q)]
. [Ww(-p - B,-q) + ws(-p - B.—q)] (4.38)

where the subscripts w and s refer to the local wiad-generated wave-
height directional spectrum and the swell spectrum, respectively. The
term Ww(p-B,q) Ww(-p-B,-q) represents previously considered ocean
surfaces in the absence of swell, whereas terms involving the swell apec-
trum represent new contributions to uvv(n) and are the origin of the
spikes in Fig. 65.

When arguments -kx and -ky are allowed in the spectra of
(4.38), the following four possible combinations of swell and wind-gen-

erated spectra interactions ex:lst:.r

w.(-p - B,-q) - W (p - B,q)

W§<-p - B,-q) - WS(~p + B,-q)

(4.39)
W + B, « W (p - B,a)
ww(p + B,q) - Wé(-p + B,-q)
From Section C.5, these combinations represent doppler shifts,
M= ww + ws positive sum mode
(4.40)
n= ww - wg difference mode

TAn interchange of subscripts provides four additional combinations, but

these create no new doppler frequencies.
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&,

N = -mw + ws difference mode
(4.40)

UIEE negative sum mode Cont.

The first term in (4.39) specifies that swell propagation components ksx
and ksy (Fig. 66) must be related to the intermediate scattered radio-
wave propagation components p and ¢. by

ky =P - B

ksy =q

therefore,

Similar expressions relating the components of kw to those of ks ex-
ist for the remaining terms in (4.39). The doppler shifts in (4.40) now

hecome

f 2 2 1172
ns= g[(ksx +28)" + ksy_ + JBk

11/2

r
Jg L(kSx - 2B)2 + kzm - {gks
2 2 172
n=- g[(ksx + 28)° + kgy] + /gks

1/2
2 2
n= —Jg [(ksx -+ ksy]

=
]

(4.41)

- JEE;

which indicate that wind-driven waves at two frequencies interact with

swell waves to produce the spikes in va(n). These four doppler

185




- -

LOCAL WIND-
GENERATED
SEA

Fig. 66. RELATIONSHIPS BETWEEN RADIO-WAVE, LOCAL-SEA, AND
SWELL PROPAGATION CONSTANTS.

frequencies are a function of the swell frequency ms = gks and the
swell angle of arrival Gs = ts.n-1 (ksy/ksx)' They also occur in pairs,
symmetric about -~he frequencies iJEE;, thereby indicating a possible
method for determining swell conditions from radar measurements. In the
example in Fig. 65, the doppler frequencies are 1 = 2.359 wB, -0.125 wB,
~0,359 Wes and ~1,875 Wy and are symmetric about uh (the swell fre-
quency in this example).

a.l four swell-induced spikes are not always present or observ-
able in plots of ovv(n). If swell frequency and angle of arrival are
such that the corresponding wind-driven waves do not exist because of
wind-speed limitations, the spikes are absent in pairs. Swell conditions
may also require corrusponding wind-generated waves to propagate against
the wind where the spectra models considered thus far have zero or near-
zero amplitude. In this event, only one spike of a symmetric pair is

affected because the other results from waves propagating with the wind.
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A possible fifth spike may occur at n=~2 Wy but only under
restricted conditions. Swell wave-wave interaction represented by
ws(p - B,q) WS(—D - B,~q) 1in (4.38) is responsible for this spike. To
satisfy simultaneously the conditions

ksx =P~ B

kgx =P~ P

requires that p = 0 and ksx = -B; similarly, ks; must be zero.
Other conditions obtained by replacing the subscript w with s in
(4.39) require that B =0 for the difference modes and ksx =B and
ksy = 0 for the negative sum mode; therefore, the 2ifth spike occurs
only when swell propagates directly toward or away from the radar, with
propagation constant 8B (ws = VE'QB). Because swell is generally asso-
ciated with ocean wavelengths greater than 100 m, radar frequencies be~

low 3 MHz are required before this fifth spike can be expected.

E. Summarg

As a result of calculating dvv(n) from the rough-surface model
proposed by Rice, radio-wave scattering from the sea has been interpreted
as a multiple Bragg process in which pairs of ocean-wave trains are re-
sponsible for the scattered electromagnetic fields. Such an interpreta-
tion led to the concept of an intermediate scattered radio wave that
could be either freely propagating or evanescent and whose Cartesian
components of propagaticn constant were the variables of integration in
Eq. (4.17) for ovv(n). Subsequent transformation of these variables
reduced this expression to a single integral for which contours of inte-
gration could be identified and related to particular features in curves
of ovv(n) vs 1 through the Bragg-scattering concept. Numerical eval-
uation of (4.17) provided a doppler continuum that is characteristic of
those found in observed sea echo and also revealed the dominance of the
second-order hydrodynamic effects in the scattering process. First-order
Bragg-line ratios appeared to be the best estimators for wird or wave
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direction, whereas total second-order power is the best indicator of
wave height and, hence, wind speed; however, such estimators proved to
be dependent on the directional wave-height spectral model employed.
How well the second-order theory represents actual scattering from the
sea is the subject of Chapter V.
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Chapter V

COMPARISONS OF THEORETICAL TO EXPERIMENTAL DATA

Arguments based cn the presence of the unsymmetrical sidebands and

the Vﬁ'mB and 23/4 Wy

or sea-echo spectra have been offered in support of the second-order

spikes in both measured and calculated doppler

Bragg theory for radio-wave scattering from the sea [Tyler et al, 1972;
Barrick, 1972; Barrick et al, 1974; Johnstone and Tyler, 1974]; however,
such qualitative comparisons have neither considered the detciled struc-—
ture of the doppler continuum nor have they been exact with regard to the
correlation of radar observations with oceanographic and meteorological
data. In this chapter, calculated doppler spectra that conform to ob-
served wind conditions and that account for the finite beamwidth of the
receive antenna are compared to grazing-incidence backscatter measure-~
ments of echo spectra that have been corroborated by in-situ tilt-buoy
observations of wave height and direction. In particular, these specire
are examined for agreement in cutoff frequencies, shape, power content,

and occurrence of swell.

A. The Experiment

A series of radar measurements taken at Wake Island on 12-19 Novem-
ber 1972 [Teague et al, 1973; Tyler et al, 1974] provides the observa-
tional data for the following comparisons. Using the IORAN--A navigation
facilities on the island (Fig. 67) as a transmitting source (1.95 MHz)
and a van-mounted receiver to form a synthetic aperture, Teague et al
(1973) made extensive radar measurements of sea echo primarily to test
the feasibility of deriving ocean-wave directional spectra from first-
order Bragg-line measurements. Although doppler shifts induced by the
moving receiver obscured higher order radar returns during the synthetic-
aperture measurements, daily stationary observations for radar calibra-
tion did provide some good examples of second-o:der scattering. Not all
of these observations produced useful data, however, because an attenua-
tor placed between the antenna and the receiver to prevent clipping of
the higher level first-order Bragg power scattered within approximately
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Fig. 67. MAP OF WAKE ISLAND.

20 xm of the island reduced most second-order returns to the radar-sys-
tem noise level. Omn 17, 18, and 19 November, the attenuator was removed;
however, data recorded on the 17th and 18th exhibited the bzst second-
order returns because of the higher winds on these days (Table 2).

Radar echoes were sampled at 25 pus intervals, thereby grouping data
in range increments (or bins) of 3.75 km each. Dicect pulses from the
IORAN-A facility fall in range bin 4, and subsequent range increments
determine the distances from the island to the scattering areas. Because
switching transients associated with the automatic blanking of thedirect
pulses appear in the data from the first several bins (Fig. 68a) and
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Table 2

WIND SPEED AND DIRECTION DURING THE WAKE~
ISLAND EXPERIMENT. The values represent
averages over the preceding 24 hours.
Winds are from the directions stated.

Date Speed Direction
(Nov) n/s Knots (degrees true)
12 5.0 9.7 55

13 7.8 15.2 61

14 9.8 19.1 59

15 8.2 15.9 66

16 13.0 25.3 60

17 13.0 25.3 62

18 12.2 23.7 77

19 9.1 17.7 99

because ionospheric reflections+ (E-layer) contaminate the echoes near
zero doppler shift in range bins 26 through 30 (Fig. 68c), only data in
bins 15 through 25 will be considered here (Fig. 68b). These curves
represent averages over the indicated range increments; however, before
averaging, corrections were made for the differences in the distances
between the receiver and the scattering areas by multiplying data in
each range bin by the cube of the distance from the receiver to the
corresponding area. This distance correction results from the assump-
tion of free-space attenuation between the radar and a distributed
scatterer [Skolnik, 1962, p. 529].

The ILORAN~A antenna provided nominally omnidirectional azimuth cov-
erage, whereas the receive antenna had an almost perfect cardioid (volt-

age response) radiation pattern in this same plane. The stationary

TThis increase in near-zero doppler-shifted power has been identified as

E-layer scattering by C. Teague. Range bin 28, corresponding to a dis-
tance of 90 km from the radar, contained most of the contaminated data.
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true; wind speed and direction are 25.3 knots and 62° true.
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observations were conducted with the peak of the receive-antenna beam
oriented toward 98° true and repeated with the peak at 278° true (Fig.
67).

B. Comparison to Theory

Direct comparisons of power spectra derived from the expressions
for incremental radar cross section per unit frequency to the Wake-Is-
land data are inappropriate because of the broad coverage of the receive
antenna. A composite of predictcd spectra is fermed, instead, bycalcu-
lating unidirectional spectra at 10° increments of the wind direction
with respect to the radar backscatter direction, and then summing the
results after each has been weighted by the desired antenna response
for its particular wind-direction backscatter angle (Fig. 69). Such
composites, formed with an assumed cardioid antenna pattern, are to be
compared to the measured spectra.

The first comparison is presented in Fig. 70 in which a Phillips
semi-isotropic wave-height spectrum at a wind speed of 25 knots has been
assumed. The measured spectrum was recorded on 17 November when the
average wind speed and direction were 25.3 knots and 62° true (Table 2),
Because absolute powers were not measured, the level of the calculated
spectrum was ad justed to obtain a least-squares fit to the observed
spectrum. This fit was applied to the logarithmic curves so as to pro-
vide comparisons at low~ and high-power levels. The first-order Bragg
lines and the calculated values that fell below 0 dB were not included
in this adjustment.

The agreement in this comparison is not satisfying. The predicted
cutoff frequencies, where the spectrum drops below 0 dB near the Bragg
lines, are too far removed from these lines, and the spikes normally
observed at iVE'QB ana t2%/4 Wy for higher wind speeds are absent.
The only point of agreement appears to be the slight increase of power
near zero doppler shift. Comparisons based on the Munk spectrum (Fig.
71) are only slightly better; the i23/4 mB spikes are present, but the
cutoff frequencies have not changed noticeably and the spikes at ﬁ¢§hb
are still missing. The ratio of sum- to difference-mode power appears
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to be too low compared to that for the observations, and the near-zero
doppler~-shift peaking decreased from that predicted by the semi-iso-
tropic spectrum.

The positions of the cutoff frequencies indicate that neither of
these wave-height models has a sufficiently low frequency content; how-
ever, this 1s to be expected because they do not allow for the resonant
ocean waves that travel faster than the wind. Conversely, nondirec-~
tional wave-height spectra measured by a wave~tilt bhuoy during 13, 15
November contain considerably lower frequencies than would be expected
from wind-speed considerations (Fig. 72). To extrapolate a realistic
wave-height spectrum for 17 November, the measured spectra were approx-
imated by an analytical curve whose expression is similar to that for
the Pierson-Moskowitz spectrum except that the frequency ratio in the
exponent has been raised to the second, rather than to the fourth, power
(Table 1). Figure 72 illustrates this curve for the wind conditions on
15 November. A comparison of predicted and measured scattered power
based on this new wave-height spectrum with an assumed c032 ©/2) di~
rectional dependence is plotted in Fig. 73 in which agreement between
prediction and observation is seen to have improved slightly over that
based on the other models. This new wave-heilght spectrum appears to
have too mich low-frequency content, however, and, to resolve this dis-
parity, it has been postulated thet changes in wind speed between 15
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and 17 November were sufficiently rapid to prevent the resonmant (but not
necessarily the direct wind-driven) waves from reaching equilibrium. If
this is the case, the low-frequency cutoff for the wave~height spectrum
of 17 November would be approximately the same as that for the spectrum
measured on 15 November; therefore, the spectrum of the 17th would have
a sharper low-frequency cutoff than that predicted by the modified Pier-
son~-Moskowitz approximation.

A model that exhibits this sharper cutoff and best fits the measured
data is the original Pierson-Moskowitz spectrum which provides the com-
parison illustrated in Fig. 74 when a c032 (©/2) directional dependence
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is applied. Agreement in the sum-mode sidebands is particularly good;

"™

however, the difference~mode calculations still contain the near-Bragg-
line shoulders observed previously. Substitution of the kernel employed
by Barrick (1971) into the radar cross-section integral (4.21) results
in a slight reduction of these shoulders but at the expense of the sum-
mode agreement (Fig. 75). Further comparisons between predicted and

»
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observed power spectra will be required before the differences between
the methods for combining the electromagnetic and hydrodynamic terms in
Eq. (4.21) can be resolved.

As more accurate directional wave-height spectral models become
available, the agreement between measured and predicted radar echoes
will probably improve; however, the original goals were to explain the
continuum observed in these echoes and to provide a theory that would
develop better directional models. Figures 74 and 75 illustrate that
the second-order multiple Bragg-scattering theory explains the doppler
continuum and could provide the means to better models for wave-height
spectra.

To check the quality of the wind-speed estimator introduced in
Chapter IV.D.3, the ratios of second~order power to first-order Bragg-
line power were calculated for both the predicted and observed radar
returns, and these are tabulated for various wave~height spectra in
Table 3; also included are the estimated wind speeds obtained by de-
termining the equivalent wind speeds at a radar frequency of 10 MHz
from the average ratios in Fig. 64 and then extrapolating these values
to 1.95 MHz by means of the contours in Fig. 61. Again, the Pierson-
Moskowitz cosz (/2) spectrum provides the best agreement with the
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Table 3

WIND-SPEED ESTIMATION

Wave-Height Spectrum Secg:g;rtgof’::st— vﬁsn?msa;::d
Phillips Semi-Isotropic -17.6 24,5 + 0.5
Munk -15.9 —
Pierson-Moskowitz c052 ©/2) -15.0 25.5 * 0.5

2
Pemenentn ©f @D | aes | masod
Approximation to Measured* -11.6 ———
Wake-Island Measurements** -14.4 25.3

1‘First-order Bragg lines are below cutoff at 10 MHz (Fig. 61b).
*This value is derived from the ratios in Fig. 61b.

*x

Power ratios as a function of wind speed were not calculated.

*ok
These values obtained from data recorded on 17 November with the

antenna peak at 278° true.

measured values although all wind-speed estimates are better than the
spectra-shape comparisons would appear to justify. Further comparisons
to observations «t several wind speeds or radar frequencies will be re-
quired before the validity of this power ratio as a wind-speed estimator
can be established. Because of *“e broad receive-antenna pattern, wind
directions could not be estimated.

The received-power spectrum measured on 18 November with the antenna
at 98° true exhibited some peculiar features that are now considered to
be swell-induced. The nondirectional wave-theight spectrum measured'on
15 November (Fig. 72) indicated the presence of swell arriving from 340°
true; however, when the frequency and direction of this swell were ap-
plied to the model presented in Chapter II.D, the results did not compare
favorably to the measured data. It has been speculated that the faster
lower frequency waves noted on the 15th had already passed through the
scattering region by the 18th and that a higher frequency component was
responsible for the observed characteristics. From the doppler frequency
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of one of these features, the swell frequency was estimated to be closer
to 09.12 than to the 0.07 Hz value measured on the 15th. Figure 76 con-
tains plots of the measured data and a composite power spectrum based on
a Pierson-Moskowitz cos2 (®/2) model for the local sea, with swell at
0.12 Hz from 340° true superimposed. This comparison cannot be consid-
ered a confirmation or a contradiction of the proposed model because the
relative amplitudes of the swell components of the received-power spec-
trum are heavily dependent on the directional form of the local wave-
height spectrum and because the actual swell comditions on the 18th are
unknown. Figure 76 does indicate, however, that the swell model predicts
a doppler-spectrum continuum as well as individual spikes, both of which
are found in the measured data. The difference-mode saoulders, the near-
zero frequency peaking, and even the outermost somewhat displaced sum-
mode swell components tend to verify that swell was observed on the 18th
and that the model was able to predict its occurrence, if not its fre-
quency and direction. Particularly noticeable, in view of the compari-
sons in Figs. 74 end 75, is the near-zero doppler-shift peaking caused
by swell. The question as to whether the similar peaking that appeared

in other data was the result of swell has yet to be answered; however,

~ Or

@ —— MEASURED
= ~—~- PREDICTED
x

w

2

o

o

g

2

W

O

W

x

-60

oVa, _ - 3/4
2 fBJifa tg 0 tg Jé'ta 234,
DOPPLER FREQUENCY (fg20.14 Hz)

Fig. 76. DOPPLER SPECTRA WITH SWELL INCLUDED. A Pierson-
Moskowitz cosine-squared wave-height spectrum has been
assumed for the local wind-driven sea; swell for the pre-
dicted spectrum is from 340° true at a frequency of 0.12
Hz . Power-level reference is arbitrary.
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this possibility must be considered if radar measurements of second~
order power are to provide accurate first-order directional wave-height

spectrum information.
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Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

The search for an explanation of the doppler-spectrum continuum
observed in radar echoes from the sea led to an integral expression for
the bistatic incremental radar cross section per unit frequency of ocean
surfaces; electromagnetic and hydrodynamic effects were included to svc~
ond order. This equation was interpreted as resulting from a double
Bragg-scattering process, thereby providing physical insight into many
of the prominent features ovserved in doppler spectra. When reduced to
the special geometry for backscatter grazing incidence, this integral
was found to agree with previously published results, except for two
minor differences that had a negligible effect on calculated radar cross
sections but, nevertheless, remain unresolved. To invert the cross-sec-
tion equation so as to determine first-order wave-height spectra, the
method presented for reducing this expression to a single integral with-
out the need to solve for roots in an auxiliary transcendental equation
could be of interest. Besides being numerically efficient, this approach
provides easily determined finite limits of integration at all doppler
frequencies except zero. The effects of swell wefe included in some of
the calculations to determine if the doppler-spectrum features not at-
tributable to local wind-driven seas and second-order theory were actu-
ally swell-induced.

Comparisons between predicted and observed doppler spectra revealed
that second-order theory accounted for most of the continuum; however,
they also indicated a need for more accurate first-order directional
wave-height spectral models., Calculations, based on the presence of
swell, uncovered characteristics in the doppler spectrum that had not
been considered swell-related. For example, the model for swell pre-
dicted increased received power levels about zero doppler shift--a char-
acteristic observeu not only in the measured data that were expected to
contain swell, but in all data examined. This particular feature could
explain a major difference between predicted and observed doppler spec~
tra.

203




Because the second-order expressions for radar cross section are a
function of the entire first-order wave-height spectrum, a possible ex-
tension of this work would be to consider the inversion of this expres-
sion to obtain such first-order spectra from radar measurements. Al-
though a model for swell has been introduced, the interaction of swell
with local wave-height spectra and the effects of this interaction on
scattered power have not been thoroughly examined. Further radar mea~
surements at several frequencies (or under varied wind conditioms), in
conjunction with oceanographic observations, are also considered neces-
sary to test completely the validity of the theories presented and to

answer some of the questions.
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Appendix A

INTEGRATION NEAR SINGULARITIES IN THE JACOBIAN

In Chapter IV.C, a transformation of the integral in Eq. (4.17)
from the p,q-plane to the kl,kz-plane led to the Jacobian

which is undefined on the integration-region boundary ¢q = 0 in the
kl,kz-plane (Fig. 37). Subsequent integration of (4.17) over k2 re-

sulted in

@, _ 4 ("2 = - -
Ogy (V) = B fo [ZI"EM(kl,kzo) + srfl(kl,kzo)]

& k. .k
- - 20 120
W(kl) W(kz) ? B—r;r dkl (A.1)

Except for the term |q|_1, the integrand is well-behaved near q = 0

therefore, integration near the singularity becomes
3 dk
fle
q

where € and €gy correspond to q =0, and q =5 or -bgq on
either the sum- or difference-mode integration contours (Figs. 40 and
41). The value of q can be made sufficiently small such that €57€4
is small and the remainder of the integrand K can be considered con-

stant. From the definition

k, =N - B 4
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it follows that

-—-—1-=i
dq k1
or
dk
~1_4dq
4 1
and, therefore,
€, dk 5q
c [ q1__KJ‘ dg
ey 0 N - B2 + g2

which integrates to

5q
K log [é + Nkp - B)z + qz]

o

Although the integrand in (A.1) is singular at q = 0, the integral is
not unles- p = B, in which case,

ky = nkp + 8% +q” = 2

and

n:i'JZﬂg:i(ﬂB

In reality, however, k1 can never be zero; therefore, no singularity
can exist at q = 0 and no contribution to second-order radar cross

section occurs at the first-order Bragg frequency.

206




Appendix B

EVALUATION OF FIRST-ORDER va FOR MONOSTATIC GRAZING INCIDENCE

First-order incremental radar cross section as defined by

o _ (T ()
Oyy = J: Oyy (n) dn

L]

represents the power contained in the first-order Bragg lines (see Fig.
42).

For a monostatic grazing-incidence radar geometry (Fig. 3), first-
order incremental radar cross section per'unit frequency is represented
by

(6 DY | }
Oy () = 1énp [w( 28,0) B(n wB) + w(28,0) d(n + wB)] (B.1)

where the expanded definition of the ocean-wave propagation constant k
(Chapter 1V.C) has been included to explain negative doppler shifts.
Arguments of the spectral terms, w(kx,ky) in (B.1), specify that only
ocean waves propageting directly toward or away from the radar with
propagation constant 2P contribute to first-order Bragg lines (Fig.
77) .

_ S~T..
k=-2Ba, k=2B4a,
pre———
TOWARD
RADAR

-——.ﬁ |_=i%- ——
/,/J“~\\-_”,fJ‘-.

e P —_— \

Fig. 77. OCEAN WAVE THAT PRODUCES BRAGG-
LINE POWER.
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For 10 MHz radar frequency, ocean waves céntributing to the Bragg
line have a frequency of 2.02 rad/sec. Figure 19 shows that, at this
frequency, the Pierson-Moskowitz amplitude spectrum is approximated by
the Phillips saturation spectrum for wind speeds greater than 20 knots;
calculations of cgv (Fig. 78) verifies this approximation for wind
speeds greater than 10 knots. For this reason, the Phillips saturation
amplitude spectrum is considered an adequate model for sample calcula-

tions of °$v‘ From Table 1,

Zﬁe
w(kx :ky) = 7

k

2

where ﬁe is the equilibrium range constant, k =k +k§, and the

2

x

factor of 4 difference between W(kx’ky) and S(kx,ky) has been in-
cluded.

Tyv (dB)
l
o
|

i 1 N
-2
cI() 20 30 40

WIND SPEEC (knots)

Fig. 78. FIRST-ORDER INCREMENTAL RADAR CROSS
SECTION FOR A PIERSON-MOSKOWITZ WAVE-HEIGHT
SPECTRUM. This plot represents either semi-
isotropic or cosine-squared directional dis-~
tributions.

Spectra with a semi-isotropic directional dependence (Fig. 20) can

cause either positive or negative Bragg lines but not both; therefore,
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w(-28,0) B3(nq - w))
oéi)(n) = 16xs4 ' B

w(2B,0) B(y + mB)

For the Phillips semi-isotropic directional spectrum,

€ be Lt

W

&

dits b i

£

7tk

£

o 4 ZBe
Oy = 16np —3 = ZBe = 0.02
k=28

¢ and, for saturated spectra with a cos? (8/2) directional dependence
(Fig. 21),

i ZB
S 0 = 16na%|—2 cos? () + cos? (&%) = 0.02
, v o 2 2
. k=20

There is some question as to the vaiidity of the value 0.02 (~17 dB) for

Y e ot e i

i
eR——p Ay o 7 e 4 v

. R
AR A

o~

oo STl T

i

iy ogv at grazing incidence. Derivations leading to (B.1l) assume an inci-

3 dent field E,; for all angles of incidence. If E, i1s assumed for

nongrazing incidence, however, then, at grazing incidence, the total in-

Fz iy clisieh,

R IITR

{ cident field above the surface is 2Ei and ozv = =23 dB. Because sec-

Y ond~order results are based on the same fields as for first-order calcu-

lations, the absolute magnitude of Uzv(n) is affected by the change to

i I SR e

£ 2Ei but the ratio of first- to second-order cross sections remains the
e same. The value of =17 dB is maintained here for consistency with the
equations presented; however, the definition of incident field used in
their derivation must be kept in mind when comparing theoretical and
measured radar cross sections at grazing incidence.

The Phillips spentrum with either a semi-isotropic or cos2 ©/2)
directional dependence yields a single value (-17 dB) for °3V at all
wind speeds (above cutoff) and directions, but the Pierson-Moskowitz
spectrum yields many values as a function of wind speed (Fig. 78) for
the same directional distributions. These values are nearly constant

(within 3 dB), however, for wind speeds greater than ~Ng/2p (9.41knots

at a radar frequency of 10 MHz).
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Values of ozv for the Munk spectrum (Fig. 79) vary with wind

speed and direction because of the spread factor s. Again, these
variations are small for higher wind speeds.

- IOF
— WIND
2 ' SPEED

2~ 1°r 15 knots

'y 20

-17 3530

- ZOL 1 1 1 1 J

100 120 140 160 180

WIND DIRECTION (deg)

I'ig. 79. FIRST-ORDER INCREMENTAL RADAR CROSS SECTION FOR A MUNK
WAVE-HEIGHT SPECTRUM. Wind direction is the angle from the ra-
dar pointing direction (Fig. 53).
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Appendix C

PLOTS OF INCREMENTAL RADAR CROSS SECTION FOR OCEAN SURFACES

A series of plots of dvv(n) cwy Vs n/wB has been gengrated for
the Phillips semi~isotropic, Munk, and Pierson-Moskowitz cos (8/2)
wave~height spectra. These plots were calculated for wind speeds of 40,
30, 20, 15, and 10 knots, and for wind directions (Fig. 80) of 90°,
112.5°, 135°, 157.5°, and 180° (Figs. 81~83). Because of symmetry, plots
for the wind directions between 90° and 0° can be obtained by reversing
the positive~ and negative-frequency axes; those for wind directions be-

tween 0° and -180° are the same as for 0° to 180°. The radar frequency

is 10 MHz ; however, Fig. 61 can be used to determine other frequencies
and wind speeds represented by these plots. For the Munk spectrum, ¢=0
and the wind speed was assumed at a height of 6.4 m.

4

WIND DIRECTION

(> Ow ». RADAR POINTING
— - DIRECTION
¢ RADAR UPWIND DOWNWIND
CROSSWIND

Fig. 80. WIND DIRECTIONS.

The abscissa of each plot is normalized doppler frequency between
~2.6 and 4+2.6, and the oxrdinate is a logarithmic scale extending from
10-'5 to 0. The height of the Bragg lines represents

00
o
ov¥s = Y5 j(; aw(n) 5(q * w) dn
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Fig. 81. INCREMENTAL RADAR CROSS SE(TION FOR PHILLIPS SEMI-ISOTROPIC
WAVE-HEIGHT SPECTRUM.
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Fig. 83. INCREMENTAL RADAR CROSS SECTION FOR PIERSON-MOSKOWITZ COSINE-
SQUARED WAVE-HEIGHT SPECTRUM.
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